結果
問題 |
No.3127 Multiple of Twin Prime
|
ユーザー |
![]() |
提出日時 | 2025-04-25 21:49:44 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 462 ms / 2,500 ms |
コード長 | 2,207 bytes |
コンパイル時間 | 462 ms |
コンパイル使用メモリ | 82,496 KB |
実行使用メモリ | 205,560 KB |
最終ジャッジ日時 | 2025-04-25 21:49:51 |
合計ジャッジ時間 | 7,338 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 1 |
other | AC * 12 |
ソースコード
import sys # sys.setrecursionlimit(200005) # sys.set_int_max_str_digits(200005) int1 = lambda x: int(x)-1 pDB = lambda *x: print(*x, end="\n", file=sys.stderr) p2D = lambda x: print(*x, sep="\n", end="\n\n", file=sys.stderr) def II(): return int(sys.stdin.readline()) def LI(): return list(map(int, sys.stdin.readline().split())) def LLI(rows_number): return [LI() for _ in range(rows_number)] def LI1(): return list(map(int1, sys.stdin.readline().split())) def LLI1(rows_number): return [LI1() for _ in range(rows_number)] def SI(): return sys.stdin.readline().rstrip() # dij = [(0, 1), (-1, 0), (0, -1), (1, 0)] dij = [(0, 1), (-1, 0), (0, -1), (1, 0), (1, 1), (1, -1), (-1, 1), (-1, -1)] # inf = -1-(-1 << 31) inf = -1-(-1 << 62) # md = 10**9+7 md = 998244353 class Sieve: def __init__(self, n): self.plist = [2] min_prime_factor = [2, 0]*(n//2+1) for x in range(3, n+1, 2): if min_prime_factor[x] == 0: min_prime_factor[x] = x self.plist.append(x) if x**2 > n: continue for y in range(x**2, n+1, 2*x): if min_prime_factor[y] == 0: min_prime_factor[y] = x self.min_prime_factor = min_prime_factor def isprime(self, x): return self.min_prime_factor[x] == x def pf(self, x): pp, ee = [], [] while x > 1: mpf = self.min_prime_factor[x] if pp and mpf == pp[-1]: ee[-1] += 1 else: pp.append(mpf) ee.append(1) x //= mpf return pp, ee # unsorted def factor(self, a): ff = [1] pp, ee = self.pf(a) for p, e in zip(pp, ee): ff, gg = [], ff w = p for _ in range(e): for f in gg: ff.append(f*w) w *= p ff += gg return ff from bisect import bisect sv=Sieve(10**7) m=len(sv.plist) ss=[] for i in range(m-1): p,q=sv.plist[i],sv.plist[i+1] if p+2==q: ss.append(p*q) for _ in range(II()): n=II() i=bisect(ss,n) if i==0: print(-1) else: print(ss[i-1])