結果
| 問題 |
No.3127 Multiple of Twin Prime
|
| コンテスト | |
| ユーザー |
yamate11
|
| 提出日時 | 2025-04-25 21:56:26 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 113 ms / 2,500 ms |
| コード長 | 21,516 bytes |
| コンパイル時間 | 4,206 ms |
| コンパイル使用メモリ | 303,728 KB |
| 実行使用メモリ | 10,420 KB |
| 最終ジャッジ日時 | 2025-04-25 21:56:43 |
| 合計ジャッジ時間 | 7,081 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 12 |
ソースコード
#include <bits/stdc++.h>
#include <cassert>
using namespace std;
using ll = long long int;
using u64 = unsigned long long;
using pll = pair<ll, ll>;
// #include <atcoder/all>
// using namespace atcoder;
#define REP(i, a, b) for (ll i = (a); i < (b); i++)
#define REPrev(i, a, b) for (ll i = (a); i >= (b); i--)
#define ALL(coll) (coll).begin(), (coll).end()
#define SIZE(v) ((ll)((v).size()))
#define REPOUT(i, a, b, exp, sep) REP(i, (a), (b)) cout << (exp) << (i + 1 == (b) ? "" : (sep)); cout << "\n"
// @@ !! LIM(sieve)
// ---- inserted library file algOp.cc
// Common definitions
// zero, one, inverse
template<typename T>
const T zero(const T& t) {
if constexpr (is_integral_v<T> || is_floating_point_v<T>) { return (T)0; }
else { return t.zero(); }
}
template<typename T>
const T one(const T& t) {
if constexpr (is_integral_v<T> || is_floating_point_v<T>) { return (T)1; }
else { return t.one(); }
}
template<typename T>
const T inverse(const T& t) {
if constexpr (is_floating_point_v<T>) { return 1.0 / t; }
else { return t.inverse(); }
}
#ifdef BOOST_MP_CPP_INT_HPP
template<> const cpp_int zero(const cpp_int& t) { return cpp_int(0); }
template<> const cpp_int one(const cpp_int& t) { return cpp_int(1); }
#endif // BOOST_MP_CPP_INT_HPP
// begin -- detection ideom
// cf. https://blog.tartanllama.xyz/detection-idiom/
namespace tartan_detail {
template <template <class...> class Trait, class Enabler, class... Args>
struct is_detected : false_type{};
template <template <class...> class Trait, class... Args>
struct is_detected<Trait, void_t<Trait<Args...>>, Args...> : true_type{};
}
template <template <class...> class Trait, class... Args>
using is_detected = typename tartan_detail::is_detected<Trait, void, Args...>::type;
// end -- detection ideom
template<typename T>
// using subst_add_t = decltype(T::subst_add(declval<typename T::value_type &>(), declval<typename T::value_type>()));
using subst_add_t = decltype(T::subst_add);
template<typename T>
using has_subst_add = is_detected<subst_add_t, T>;
template<typename T>
using add_t = decltype(T::add);
template<typename T>
using has_add = is_detected<add_t, T>;
template<typename T>
using subst_mult_t = decltype(T::subst_mult);
template<typename T>
using has_subst_mult = is_detected<subst_mult_t, T>;
template<typename T>
using mult_t = decltype(T::mult);
template<typename T>
using has_mult = is_detected<mult_t, T>;
template<typename T>
using subst_subt_t = decltype(T::subst_subt);
template<typename T>
using has_subst_subt = is_detected<subst_subt_t, T>;
template<typename T>
using subt_t = decltype(T::subt);
template<typename T>
using has_subt = is_detected<subt_t, T>;
template <typename Opdef>
struct MyAlg {
using T = typename Opdef::value_type;
using value_type = T;
T v;
MyAlg() {}
MyAlg(const T& v_) : v(v_) {}
MyAlg(T&& v_) : v(move(v_)) {}
bool operator==(MyAlg o) const { return v == o.v; }
bool operator!=(MyAlg o) const { return v != o.v; }
operator T() const { return v; }
MyAlg zero() const { return MyAlg(Opdef::zero(v)); }
MyAlg one() const { return MyAlg(Opdef::one(v)); }
MyAlg inverse() const { return MyAlg(Opdef::inverse(v)); }
MyAlg operator/=(const MyAlg& o) { return *this *= o.inverse(); }
MyAlg operator/(const MyAlg& o) const { return (*this) * o.inverse(); }
MyAlg operator-() const { return zero() - *this; }
MyAlg& operator +=(const MyAlg& o) {
if constexpr (has_subst_add<Opdef>::value) {
Opdef::subst_add(v, o.v);
return *this;
}else if constexpr (has_add<Opdef>::value) {
v = Opdef::add(v, o.v);
return *this;
}else static_assert("either subst_add or add is needed.");
}
MyAlg operator +(const MyAlg& o) const {
if constexpr (has_add<Opdef>::value) {
return MyAlg(Opdef::add(v, o.v));
}else if constexpr (has_subst_add<Opdef>::value) {
MyAlg ret(v);
Opdef::subst_add(ret.v, o.v);
return ret;
}else static_assert("either subst_add or add is needed.");
}
MyAlg& operator *=(const MyAlg& o) {
if constexpr (has_subst_mult<Opdef>::value) {
Opdef::subst_mult(v, o.v);
return *this;
}else if constexpr (has_mult<Opdef>::value) {
v = Opdef::mult(v, o.v);
return *this;
}else static_assert("either subst_mult or mult is needed.");
}
MyAlg operator *(const MyAlg& o) const {
if constexpr (has_mult<Opdef>::value) {
return MyAlg(Opdef::mult(v, o.v));
}else if constexpr (has_subst_mult<Opdef>::value) {
MyAlg ret(v);
Opdef::subst_mult(ret.v, o.v);
return ret;
}else static_assert("either subst_mult or mult is needed.");
}
MyAlg& operator -=(const MyAlg& o) {
if constexpr (has_subst_subt<Opdef>::value) {
Opdef::subst_subt(v, o.v);
return *this;
}else if constexpr (has_subt<Opdef>::value) {
v = Opdef::subt(v, o.v);
return *this;
}else static_assert("either subst_subt or subt is needed.");
}
MyAlg operator -(const MyAlg& o) const {
if constexpr (has_subt<Opdef>::value) {
return MyAlg(Opdef::subt(v, o.v));
}else if constexpr (has_subst_subt<Opdef>::value) {
MyAlg ret(v);
Opdef::subst_subt(ret.v, o.v);
return ret;
}else static_assert("either subst_subt or subt is needed.");
}
friend istream& operator >>(istream& is, MyAlg& t) { is >> t.v; return is; }
friend ostream& operator <<(ostream& os, const MyAlg& t) { os << t.v; return os; }
};
// ---- end algOp.cc
// ---- inserted function f:gcd from util.cc
// auto [g, s, t] = eGCD(a, b)
// g == gcd(|a|, |b|) and as + bt == g
// It guarantees that max(|s|, |t|) <= max(|a| / g, |b| / g) (when g != 0)
// Note that gcd(a, 0) == gcd(0, a) == a.
template<typename INT=ll>
tuple<INT, INT, INT> eGCD(INT a, INT b) {
INT sa = a < 0 ? -1 : 1;
INT ta = 0;
INT za = a * sa;
INT sb = 0;
INT tb = b < 0 ? -1 : 1;
INT zb = b * tb;
while (zb != 0) {
INT q = za / zb;
INT r = za % zb;
za = zb;
zb = r;
INT new_sb = sa - q * sb;
sa = sb;
sb = new_sb;
INT new_tb = ta - q * tb;
ta = tb;
tb = new_tb;
}
return {za, sa, ta};
}
pair<ll, ll> crt_sub(ll a1, ll x1, ll a2, ll x2) {
// DLOGKL("crt_sub", a1, x1, a2, x2);
a1 = a1 % x1;
a2 = a2 % x2;
auto [g, s, t] = eGCD(x1, -x2);
ll gq = (a2 - a1) / g;
ll gr = (a2 - a1) % g;
if (gr != 0) return {-1, -1};
s *= gq;
t *= gq;
ll z = x1 / g * x2;
// DLOGK(z);
s = s % (x2 / g);
ll r = (x1 * s + a1) % z;
// DLOGK(r);
if (r < 0) r += z;
// DLOGK(r);
return {r, z};
};
// Chinese Remainder Theorem
//
// r = crt(a1, x1, a2, x2)
// ==> r = a1 (mod x1); r = a2 (mod x2); 0 <= r < lcm(x1, x2)
// If no such r exists, returns -1
// Note: x1 and x2 should >= 1. a1 and a2 can be negative or zero.
//
// r = crt(as, xs)
// ==> for all i. r = as[i] (mod xs[i]); 0 <= r < lcm(xs)
// If no such r exists, returns -1
// Note: xs[i] should >= 1. as[i] can be negative or zero.
// It should hold: len(xs) == len(as) > 0
ll crt(ll a1, ll x1, ll a2, ll x2) { return crt_sub(a1, x1, a2, x2).first; }
ll crt(vector<ll> as, vector<ll> xs) {
// DLOGKL("crt", as, xs);
assert(xs.size() == as.size() && xs.size() > 0);
ll r = as[0];
ll z = xs[0];
for (size_t i = 1; i < xs.size(); i++) {
// DLOGK(i, r, z, as[i], xs[i]);
tie(r, z) = crt_sub(r, z, as[i], xs[i]);
// DLOGK(r, z);
if (r == -1) return -1;
}
return r;
}
// ---- end f:gcd
// ---- inserted library file mod.cc
template<int mod=0, typename INT=ll>
struct FpG { // G for General
static INT dyn_mod;
static INT getMod() {
if (mod == 0) return dyn_mod;
else return (INT)mod;
}
// Effective only when mod == 0.
// _mod must be less than the half of the maximum value of INT.
static void setMod(INT _mod) {
dyn_mod = _mod;
}
static INT _conv(INT x) {
if (x >= getMod()) return x % getMod();
if (x >= 0) return x;
if (x >= -getMod()) return x + getMod();
INT y = x % getMod();
if (y == 0) return 0;
return y + getMod();
}
INT val;
FpG(INT t = 0) : val(_conv(t)) {}
FpG(const FpG& t) : val(t.val) {}
FpG& operator =(const FpG& t) { val = t.val; return *this; }
FpG& operator =(INT t) { val = _conv(t); return *this; }
FpG& operator +=(const FpG& t) {
val += t.val;
if (val >= getMod()) val -= getMod();
return *this;
}
FpG& operator -=(const FpG& t) {
val -= t.val;
if (val < 0) val += getMod();
return *this;
}
FpG& operator *=(const FpG& t) {
val = (val * t.val) % getMod();
return *this;
}
FpG inv() const {
if (val == 0) { throw runtime_error("FpG::inv(): called for zero."); }
auto [g, u, v] = eGCD(val, getMod());
if (g != 1) { throw runtime_error("FpG::inv(): not co-prime."); }
return FpG(u);
}
FpG zero() const { return (FpG)0; }
FpG one() const { return (FpG)1; }
FpG inverse() const { return inv(); }
FpG& operator /=(const FpG& t) {
return (*this) *= t.inv();
}
FpG operator +(const FpG& t) const { return FpG(val) += t; }
FpG operator -(const FpG& t) const { return FpG(val) -= t; }
FpG operator *(const FpG& t) const { return FpG(val) *= t; }
FpG operator /(const FpG& t) const { return FpG(val) /= t; }
FpG operator -() const { return FpG(-val); }
bool operator ==(const FpG& t) const { return val == t.val; }
bool operator !=(const FpG& t) const { return val != t.val; }
operator INT() const { return val; }
friend FpG operator +(INT x, const FpG& y) { return FpG(x) + y; }
friend FpG operator -(INT x, const FpG& y) { return FpG(x) - y; }
friend FpG operator *(INT x, const FpG& y) { return FpG(x) * y; }
friend FpG operator /(INT x, const FpG& y) { return FpG(x) / y; }
friend bool operator ==(INT x, const FpG& y) { return FpG(x) == y; }
friend bool operator !=(INT x, const FpG& y) { return FpG(x) != y; }
friend FpG operator +(const FpG& x, INT y) { return x + FpG(y); }
friend FpG operator -(const FpG& x, INT y) { return x - FpG(y); }
friend FpG operator *(const FpG& x, INT y) { return x * FpG(y); }
friend FpG operator /(const FpG& x, INT y) { return x / FpG(y); }
friend bool operator ==(const FpG& x, INT y) { return x == FpG(y); }
friend bool operator !=(const FpG& x, INT y) { return x != FpG(y); }
/* The following are needed to avoid warnings in cases such as FpG x; x = 5 + x; rather than x = FpG(5) + x; */
friend FpG operator +(int x, const FpG& y) { return FpG(x) + y; }
friend FpG operator -(int x, const FpG& y) { return FpG(x) - y; }
friend FpG operator *(int x, const FpG& y) { return FpG(x) * y; }
friend FpG operator /(int x, const FpG& y) { return FpG(x) / y; }
friend bool operator ==(int x, const FpG& y) { return FpG(x) == y; }
friend bool operator !=(int x, const FpG& y) { return FpG(x) != y; }
friend FpG operator +(const FpG& x, int y) { return x + FpG(y); }
friend FpG operator -(const FpG& x, int y) { return x - FpG(y); }
friend FpG operator *(const FpG& x, int y) { return x * FpG(y); }
friend FpG operator /(const FpG& x, int y) { return x / FpG(y); }
friend bool operator ==(const FpG& x, int y) { return x == FpG(y); }
friend bool operator !=(const FpG& x, int y) { return x != FpG(y); }
friend istream& operator>> (istream& is, FpG& t) {
INT x; is >> x;
t = x;
return is;
}
friend ostream& operator<< (ostream& os, const FpG& t) {
os << t.val;
return os;
}
};
template<int mod, typename INT>
INT FpG<mod, INT>::dyn_mod;
template<typename T>
class Comb {
int nMax;
vector<T> vFact;
vector<T> vInvFact;
public:
Comb(int nm) : nMax(nm), vFact(nm+1), vInvFact(nm+1) {
vFact[0] = 1;
for (int i = 1; i <= nMax; i++) vFact[i] = i * vFact[i-1];
vInvFact.at(nMax) = (T)1 / vFact[nMax];
for (int i = nMax; i >= 1; i--) vInvFact[i-1] = i * vInvFact[i];
}
T fact(int n) { return vFact[n]; }
T binom(int n, int r) {
if (r < 0 || r > n) return (T)0;
return vFact[n] * vInvFact[r] * vInvFact[n-r];
}
T binom_dup(int n, int r) { return binom(n + r - 1, r); }
// The number of permutation extracting r from n.
T perm(int n, int r) {
return vFact[n] * vInvFact[n-r];
}
};
constexpr int primeA = 1'000'000'007;
constexpr int primeB = 998'244'353; // '
using FpA = FpG<primeA, ll>;
using FpB = FpG<primeB, ll>;
// ---- end mod.cc
// ---- inserted library file random.cc
struct Random {
static random_device the_random_device;
mt19937_64 rng;
Random() : rng(the_random_device()) {}
Random(unsigned seed) : rng(seed) {}
ll range(ll i, ll j) {
if (i >= j) {
throw runtime_error("Random.range: invalid range");
}
uniform_int_distribution<ll> dist(i, j - 1);
return dist(rng);
}
};
random_device Random::the_random_device;
// ---- end random.cc
// ---- inserted library file power.cc
template<typename T>
T power(const T& a, ll b) {
auto two_pow = a;
auto ret = one<T>(a);
while (b > 0) {
if (b & 1LL) ret *= two_pow;
two_pow *= two_pow;
b >>= 1;
}
return ret;
}
// a >= 0, b >= 0; If overflow, returns -1.
ll llpower(ll a, ll b) {
if (b == 0) return 1; // 0^0 == 1
if (b == 1) return a;
if (a == 0) return 0;
if (a == 1) return 1;
if (a == 2) {
if (b >= 63) return -1;
else return 1LL << b;
}
if (b == 2) {
ll ret;
if (__builtin_smulll_overflow(a, a, &ret)) return -1;
return ret;
}
ll two_pow = a;
ll ret = 1;
assert(b > 0);
while (true) {
if (b & 1LL) {
if (__builtin_smulll_overflow(ret, two_pow, &ret)) return -1;
}
b >>= 1;
if (b == 0) break;
if (__builtin_smulll_overflow(two_pow, two_pow, &two_pow)) return -1;
}
return ret;
}
// a >= 0; Returns x s.t. x*x <= a < (x+1)*(x+1)
ll llsqrt(ll a) {
ll x = llround(sqrt((double)a));
ll y;
if (__builtin_smulll_overflow(x, x, &y) or a < y) return x - 1;
else return x;
}
// a >= 0, m >= 2; Returns x s.t. x^m <= a < (x + 1)^m
ll llroot(ll a, ll m) {
ll x = llround(pow(a, 1.0 / m));
ll y = llpower(x, m);
if (y == -1 or a < y) return x - 1;
else return x;
}
// base >= 2, a >= 1; Returns x s.t. base^{x} <= a < base^{x + 1}
ll lllog(ll base, ll a) {
ll x = llround(log(a) / log(base));
ll y = llpower(base, x);
if (y == -1 or a < y) return x - 1;
else return x;
}
// ---- end power.cc
// ---- inserted library file sieve.cc
// sieve(upto) returns the list of prime numbers up to upto.
// Size: upto(1e8).size() ... 5.7e6, upto(1e9).size() ... 5.1e7
// Performance: upto(1e8) ... 0.7sec, upto(1e9) ... 9.2sec
vector<int> sieve(int upto) {
vector<int> res;
vector<bool> tbl(upto+1);
ll lim = (int)(sqrt((double)upto)) + 1;
for (int x = 2; x <= upto; x++) {
if (tbl[x]) continue;
res.push_back(x);
if (x <= lim) {
for (int y = x * x; y <= upto; y += x) tbl[y] = true;
}
}
return res;
}
vector<int> divisorSieve(int upto) {
vector<int> tbl(upto+1);
iota(tbl.begin(), tbl.end(), 0);
ll lim = (int)(sqrt((double)upto)) + 1;
for (int x = 2; x <= lim; x++) {
if (tbl[x] < x) continue;
for (int y = x * x; y <= upto; y += x) if (tbl[y] == y) tbl[y] = x;
}
return tbl;
}
/*
Prime Factorization
Two versions:
- prfac(n)
- prfac(n, primes)
primes should contain prime numbers at least up to sqrt(n)
*/
struct myiter_primes {
const vector<int>& primes;
int i;
myiter_primes(const auto& primes_) : primes(primes_), i(0) {}
int next() {
if (i == ssize(primes)) return -1;
else return primes[i++];
}
};
struct myiter_int {
int x;
myiter_int() : x(0) {}
int next() {
x++;
if (x == 1) { return 2; }
if (x == 2) { return 3; }
if (x % 2 == 1) { return 3 * x - 4; }
return 3 * x - 5;
}
};
vector<pair<ll, int>> _prfac_sub(ll n, auto& mit) {
vector<pair<ll, int>> res;
ll x = n;
while (x > 1) {
ll p = mit.next();
if (p < 0) {
throw runtime_error("_prfac_sub: prime range too small");
}
if (p * p > x) break;
int r = 0;
while (x % p == 0) {
x /= p;
r++;
}
if (r > 0) res.push_back(make_pair(p, r));
}
if (x > 1) res.push_back(make_pair(x, 1));
return res;
}
vector<pair<ll, int>> prfac(ll n) {
myiter_int mit;
return _prfac_sub(n, mit);
}
vector<pair<ll, int>> prfac(ll n, const vector<int>& primes) {
myiter_primes mit(primes);
return _prfac_sub(n, mit);
}
vector<pair<int, int>> prfacDivSieve(int n, const vector<int>& divSieve) {
vector<pair<int, int>> ret;
int p = -1;
int r = 0;
while (n > 1) {
int q = divSieve[n];
if (p == q) {
r++;
}else {
if (p > 0) ret.emplace_back(p, r);
p = q;
r = 1;
}
n /= p;
}
if (p > 0) ret.emplace_back(p, r);
return ret;
}
/*
List of divisors
- getDivisors(n)
- getDivisors(n, primes)
primes should contain prime numbers at least up to sqrt(n)
Note: the results are NOT sorted
*/
// _gdsub ... aux function used in getDivisors()
vector<ll> _gdsub(int i, const auto& fs) {
if (i == (int)fs.size()) { return vector<ll>({1}); }
auto part = _gdsub(i+1, fs);
auto [p, r] = fs[i];
ll pp = 1; // pp = p^m, for m \in [1, r]
int partOrigLen = part.size();
for (int m = 1; m <= r; m++) {
pp *= p;
for (int j = 0; j < partOrigLen; j++) part.push_back(pp * part[j]);
}
return part;
}
vector<ll> getDivisors(ll n) { return _gdsub(0, prfac(n)); }
vector<ll> getDivisors(ll n, const vector<int>& primes) { return _gdsub(0, prfac(n, primes)); }
vector<ll> getDivisorsDivSieve(ll n, const vector<int>& divSieve) { return _gdsub(0, prfacDivSieve(n, divSieve)); }
// Miller-Rabin prime judgement
// is_prime_MR(n) returns true iff n is prime for u64 n.
// The original code is on https://zenn.dev/mizar/articles/791698ea860581
#include <cstdbool>
#include <cstdint>
uint64_t modmul(uint64_t a, uint64_t b, uint64_t n) {
return (uint64_t)(((__uint128_t)a) * ((__uint128_t)b) % ((__uint128_t)n));
}
uint64_t modpow(uint64_t a, uint64_t b, uint64_t n) {
uint64_t t = ((b & 1) == 0) ? 1 : a;
for (b >>= 1; b != 0; b >>= 1) {
a = modmul(a, a, n);
if ((b & 1) == 1) { t = modmul(t, a, n); }
}
return t;
}
const uint64_t bases[] = {2,325,9375,28178,450775,9780504,1795265022};
bool is_prime_MR(uint64_t n) {
if (n == 2) { return true; }
if (n < 2 || (n & 1) == 0) { return false; }
uint64_t n1 = n - 1, d = n - 1;
uint32_t s = 0;
for (; (d & 1) == 0; d >>= 1) { s += 1; }
for (const auto& base : bases) {
uint64_t a = base;
if (a >= n) {
a %= n;
if (a == 0) { continue; }
}
uint64_t t = modpow(a, d, n);
if (t == 1) { continue; }
for (uint32_t j = 1; t != n1; ++j) {
if (j >= s) { return false; }
t = modmul(t, t, n);
}
}
return true;
}
ll findPrimeFactor(ll n) {
if (n % 2 == 0) return 2;
ll m = llround(ceil(pow((double)n, 0.125)));
auto loop_c = [&]() -> ll {
auto sub_c = [&](int c) -> ll {
ll y = 0;
auto sub_r = [&](int r) -> ll {
auto next_rand = [&](__int128 a) -> ll { return (a * a + c) % n; };
ll x = y;
int th1 = 3 * r / 4;
for (int k = 0; k < th1; k++) y = next_rand(y);
for (int j = 0; th1 + j * m < r; j++) {
auto sub_range_all = [&](ll st, ll len) -> ll {
ll en = st + len > r ? r : st + len;
ll q = 1;
for (int k = st; k < en; k++) {
y = next_rand(y);
q = (__int128)q * abs(x - y) % n;
}
return gcd(q, n);
};
auto sub_range_each = [&](ll st, ll len) -> ll {
ll en = st + len > r ? r : st + len;
for (int k = st; k < en; k++) {
y = next_rand(y);
if (ll g = gcd(abs(x - y), n); g != 1) return g;
}
assert(0);
};
ll y_save = y;
auto g = sub_range_all(th1 + j * m, m);
if (g == n) {
y = y_save;
return sub_range_each(th1 + j * m, m);
}else if (g != 1) return g;
}
return 1;
};
for (int r = 1; true; r *= 2) { if (ll res = sub_r(r); res != 1) return res; }
};
for (int c = 1; true; c++) { if (ll res = sub_c(c); res != n) return res; }
};
ll v = loop_c();
if (is_prime_MR(v )) return v;
else if (is_prime_MR(n / v)) return n / v;
else return findPrimeFactor(v);
}
vector<pair<ll, int>> prfacPollardsRho(ll n) {
vector<pair<ll, int>> ret;
while (n > 1 and not is_prime_MR(n)) {
ll p = findPrimeFactor(n);
int r = 0;
while (n % p == 0) {
n /= p;
r++;
}
ret.emplace_back(p, r);
}
if (n > 1) ret.emplace_back(n, 1);
sort(ret.begin(), ret.end());
return ret;
}
// ---- end sieve.cc
// @@ !! LIM -- end mark --
int main(/* int argc, char *argv[] */) {
ios_base::sync_with_stdio(false);
cin.tie(nullptr);
cout << setprecision(20);
ll lim = (ll)1e7 + 1000;
auto primes = sieve(lim);
vector<ll> twp;
REP(i, 0, ssize(primes) - 1) {
if (primes[i] + 2 == primes[i + 1]) twp.push_back((ll)primes[i] * (ll)primes[i + 1]);
}
auto solve = [&](ll N) -> ll {
ll i = lower_bound(ALL(twp), N + 1) - twp.begin();
i--;
if (i < 0) return -1;
return twp[i];
};
ll T; cin >> T;
REP(i, 0, T) {
ll N; cin >> N;
cout << solve(N) << "\n";
}
return 0;
}
yamate11