結果

問題 No.3129 Multiple of Twin Subarray
ユーザー detteiuu
提出日時 2025-04-25 22:07:21
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 1,437 ms / 2,000 ms
コード長 5,886 bytes
コンパイル時間 475 ms
コンパイル使用メモリ 82,648 KB
実行使用メモリ 160,744 KB
最終ジャッジ日時 2025-04-25 22:08:01
合計ジャッジ時間 31,246 ms
ジャッジサーバーID
(参考情報)
judge3 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 46
権限があれば一括ダウンロードができます

ソースコード

diff #

# https://github.com/tatyam-prime/SortedSet/blob/main/SortedMultiset.py
import math
from bisect import bisect_left, bisect_right
from typing import Generic, Iterable, Iterator, List, Tuple, TypeVar, Optional
T = TypeVar('T')

class SortedMultiset(Generic[T]):
    BUCKET_RATIO = 16
    SPLIT_RATIO = 24
    
    def __init__(self, a: Iterable[T] = []) -> None:
        "Make a new SortedMultiset from iterable. / O(N) if sorted / O(N log N)"
        a = list(a)
        n = self.size = len(a)
        if any(a[i] > a[i + 1] for i in range(n - 1)):
            a.sort()
        num_bucket = int(math.ceil(math.sqrt(n / self.BUCKET_RATIO)))
        self.a = [a[n * i // num_bucket : n * (i + 1) // num_bucket] for i in range(num_bucket)]

    def __iter__(self) -> Iterator[T]:
        for i in self.a:
            for j in i: yield j

    def __reversed__(self) -> Iterator[T]:
        for i in reversed(self.a):
            for j in reversed(i): yield j
    
    def __eq__(self, other) -> bool:
        return list(self) == list(other)
    
    def __len__(self) -> int:
        return self.size
    
    def __repr__(self) -> str:
        return "SortedMultiset" + str(self.a)
    
    def __str__(self) -> str:
        s = str(list(self))
        return "{" + s[1 : len(s) - 1] + "}"

    def _position(self, x: T) -> Tuple[List[T], int, int]:
        "return the bucket, index of the bucket and position in which x should be. self must not be empty."
        for i, a in enumerate(self.a):
            if x <= a[-1]: break
        return (a, i, bisect_left(a, x))

    def __contains__(self, x: T) -> bool:
        if self.size == 0: return False
        a, _, i = self._position(x)
        return i != len(a) and a[i] == x

    def count(self, x: T) -> int:
        "Count the number of x."
        return self.index_right(x) - self.index(x)

    def add(self, x: T) -> None:
        "Add an element. / O(√N)"
        if self.size == 0:
            self.a = [[x]]
            self.size = 1
            return
        a, b, i = self._position(x)
        a.insert(i, x)
        self.size += 1
        if len(a) > len(self.a) * self.SPLIT_RATIO:
            mid = len(a) >> 1
            self.a[b:b+1] = [a[:mid], a[mid:]]
    
    def _pop(self, a: List[T], b: int, i: int) -> T:
        ans = a.pop(i)
        self.size -= 1
        if not a: del self.a[b]
        return ans

    def discard(self, x: T) -> bool:
        "Remove an element and return True if removed. / O(√N)"
        if self.size == 0: return False
        a, b, i = self._position(x)
        if i == len(a) or a[i] != x: return False
        self._pop(a, b, i)
        return True

    def lt(self, x: T) -> Optional[T]:
        "Find the largest element < x, or None if it doesn't exist."
        for a in reversed(self.a):
            if a[0] < x:
                return a[bisect_left(a, x) - 1]

    def le(self, x: T) -> Optional[T]:
        "Find the largest element <= x, or None if it doesn't exist."
        for a in reversed(self.a):
            if a[0] <= x:
                return a[bisect_right(a, x) - 1]

    def gt(self, x: T) -> Optional[T]:
        "Find the smallest element > x, or None if it doesn't exist."
        for a in self.a:
            if a[-1] > x:
                return a[bisect_right(a, x)]

    def ge(self, x: T) -> Optional[T]:
        "Find the smallest element >= x, or None if it doesn't exist."
        for a in self.a:
            if a[-1] >= x:
                return a[bisect_left(a, x)]
    
    def __getitem__(self, i: int) -> T:
        "Return the i-th element."
        if i < 0:
            for a in reversed(self.a):
                i += len(a)
                if i >= 0: return a[i]
        else:
            for a in self.a:
                if i < len(a): return a[i]
                i -= len(a)
        raise IndexError
    
    def pop(self, i: int = -1) -> T:
        "Pop and return the i-th element."
        if i < 0:
            for b, a in enumerate(reversed(self.a)):
                i += len(a)
                if i >= 0: return self._pop(a, ~b, i)
        else:
            for b, a in enumerate(self.a):
                if i < len(a): return self._pop(a, b, i)
                i -= len(a)
        raise IndexError

    def index(self, x: T) -> int:
        "Count the number of elements < x."
        ans = 0
        for a in self.a:
            if a[-1] >= x:
                return ans + bisect_left(a, x)
            ans += len(a)
        return ans

    def index_right(self, x: T) -> int:
        "Count the number of elements <= x."
        ans = 0
        for a in self.a:
            if a[-1] > x:
                return ans + bisect_right(a, x)
            ans += len(a)
        return ans

N = int(input())
A = list(map(int, input().split()))

INF = 1<<60

def func(A):
    cum = [0]
    for a in A:
        cum.append(cum[-1]+a)
    L = [[-INF, INF, INF, INF] for _ in range(N)]
    S = SortedMultiset([0])
    for i in range(1, N+1):
        L[i-1][0] = cum[i]-S[0]
        L[i-1][1] = cum[i]-S[-1]
        b = S.index(cum[i])
        if b < len(S) and S[b] == cum[i]:
            L[i-1][2] = 0
            L[i-1][3] = 0
        else:
            if 1 <= b:
                L[i-1][2] = cum[i]-S[b-1]
            if b < len(S):
                L[i-1][3] = cum[i]-S[b]
        if 2 <= i:
            L[i-1][0] = max(L[i-1][0], L[i-2][0])
            L[i-1][1] = min(L[i-1][1], L[i-2][1])
            L[i-1][2] = min(L[i-1][2], L[i-2][2])
            L[i-1][3] = max(L[i-1][3], L[i-2][3])
        S.add(cum[i])
    return L

L = func(A)
R = func(A[::-1])[::-1]

ans = -INF
for i in range(N-1):
    ans = max(ans, L[i][0]*R[i+1][0], L[i][1]*R[i+1][1])
    if L[i][2] != INF and R[i+1][3] != INF:
        ans = max(ans, L[i][2]*R[i+1][3])
    if L[i][3] != INF and R[i+1][2] != INF:
        ans = max(ans, L[i][3]*R[i+1][2])

print(ans)
0