結果
| 問題 |
No.3058 Deque and Brackets
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-04-27 20:59:59 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
MLE
|
| 実行時間 | - |
| コード長 | 10,351 bytes |
| コンパイル時間 | 4,174 ms |
| コンパイル使用メモリ | 313,148 KB |
| 実行使用メモリ | 824,960 KB |
| 最終ジャッジ日時 | 2025-04-27 21:00:14 |
| 合計ジャッジ時間 | 12,260 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 7 MLE * 1 -- * 14 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
#define rep(i, n) for(int i=0; i<n; i++)
#define debug 0
#define YES cout << "Yes" << endl;
#define NO cout << "No" << endl;
using ll = long long;
using ld = long double;
const int mod = 998244353;
const int MOD = 1000000007;
const double pi = atan2(0, -1);
const int inf = 1 << 31 - 1;
const ll INF = 1LL << 63 - 1;
#include <time.h>
#include <chrono>
//vectorの中身を空白区切りで出力
template<typename T>
void printv(vector<T> v) {
for (int i = 0; i < v.size(); i++) {
cout << v[i];
if (i < v.size() - 1) {
cout << " ";
}
}
cout << endl;
}
//vectorの中身を改行区切りで出力
template<typename T>
void print1(vector<T> v) {
for (auto x : v) {
cout << x << endl;
}
}
//二次元配列を出力
template<typename T>
void printvv(vector<vector<T>> vv) {
for (vector<T> v : vv) {
printv(v);
}
}
//vectorを降順にソート
template<typename T>
void rsort(vector<T>& v) {
sort(v.begin(), v.end());
reverse(v.begin(), v.end());
}
//昇順priority_queueを召喚
template<typename T>
struct rpriority_queue {
priority_queue<T, vector<T>, greater<T>> pq;
void push(T x) {
pq.push(x);
}
void pop() {
pq.pop();
}
T top() {
return pq.top();
}
size_t size() {
return pq.size();
}
bool empty() {
return pq.empty();
}
};
//mod mod下で逆元を算出する
//高速a^n計算(mod ver.)
ll power(ll a, ll n) {
if (n == 0) {
return 1;
}
else if (n % 2 == 0) {
ll x = power(a, n / 2);
x *= x;
x %= mod;
return x;
}
else {
ll x = power(a, n - 1);
x *= a;
x %= mod;
return x;
}
}
//フェルマーの小定理を利用
ll modinv(ll p) {
return power(p, mod - 2) % mod;
}
//Mexを求める
struct Mex {
map<int, int> mp;
set<int> s;
Mex(int Max) {
for (int i = 0; i <= Max; i++) {
s.insert(i);
}
}
int _mex = 0;
void Input(int x) {
mp[x]++;
s.erase(x);
if (_mex == x) {
_mex = *begin(s);
}
}
void Remove(int x) {
if (mp[x] == 0) {
cout << "Mex ERROR!: NO VALUE WILL BE REMOVED" << endl;
}
mp[x]--;
if (mp[x] == 0) {
s.insert(x);
if (*begin(s) == x) {
_mex = x;
}
}
}
int mex() {
return _mex;
}
};
//条件分岐でYes/Noを出力するタイプのやつ
void YN(bool true_or_false) {
cout << (true_or_false ? "Yes" : "No") << endl;
}
//最大公約数(ユークリッドの互除法)
ll gcd(ll a, ll b) {
if (b > a) {
swap(a, b);
}
while (a % b != 0) {
ll t = a;
a = b;
b = t % b;
}
return b;
}
//最小公倍数(gcdを定義しておく)
ll lcm(ll a, ll b) {
ll g = gcd(a, b);
ll x = (a / g) * b;
return x;
}
struct UnionFind {
vector<int> par;
UnionFind(int N) {
rep(i, N) {
par.push_back(i);
}
}
int root(int x) {
if (par[x] == x) {
return x;
}
else {
return par[x] = root(par[x]);
}
}
bool isSame(int x, int y) {
return root(x) == root(y);
}
void Union(int x, int y) {
if (!isSame(x, y)) {
int rx = root(x), ry = root(y);
if (rx > ry) {
par[rx] = ry;
}
else {
par[ry] = rx;
}
}
}
};
//最大流問題を解く構造体(Ford-Fulkerson法.O(FE))
struct maxflow {
struct Edge {
int to, rev;
ll capacity, init_capacity;
Edge(int _to, int _rev, ll _capacity) :to(_to), rev(_rev), capacity(_capacity), init_capacity(_capacity) {};
};
vector<vector<Edge>> Graph;
maxflow(int MAX_V) {
Graph.assign(MAX_V, {});
}
void input(int from, int to, ll capacity) {
int e_id = Graph[from].size();
int r_id = Graph[to].size();
Graph[from].push_back(Edge(to, r_id, capacity));
Graph[to].push_back(Edge(from, e_id, 0));
}
Edge& rev_Edge(Edge& edge) {
return Graph[edge.to][edge.rev];
}
vector<bool> visited;
ll dfs(int now, int g, ll flow) {
visited[now] = true;
if (now == g) {
return flow;
}
else {
ll f = 0;
ll res_flow = flow;
for (Edge& edge : Graph[now]) {
if (!visited[edge.to] && edge.capacity > 0) {
ll f_delta = dfs(edge.to, g, min(res_flow, edge.capacity));
edge.capacity -= f_delta;
rev_Edge(edge).capacity += f_delta;
f += f_delta;
res_flow -= f_delta;
if (res_flow == 0) {
break;
}
}
}
return f;
}
}
void flowing(int s, int g, ll init_flow = INF) {
bool cont = true;
while (cont) {
visited.assign(Graph.size(), false);
ll flow = dfs(s, g, init_flow);
init_flow -= flow;
if (flow == 0) {
cont = false;
}
}
}
ll get_flow(int g) {
ll flow = 0;
for (Edge& edge : Graph[g]) {
Edge& rev_edge = rev_Edge(edge);
ll tmp_flow = rev_edge.init_capacity - rev_edge.capacity;
if (tmp_flow > 0) {
flow += tmp_flow;
}
}
return flow;
}
vector<tuple<int, int, ll>> flowing_edges() {
vector<tuple<int, int, ll>> vec;
rep(from, Graph.size()) {
for (Edge& edge : Graph[from]) {
ll flow = edge.init_capacity - edge.capacity;
if (flow > 0) {
vec.push_back({ from,edge.to,flow });
}
}
}
return vec;
}
vector<bool> min_cut(int s) {
vector<bool> check(Graph.size(), false);
queue<int> q;
q.push(s);
check[s] = true;
while (!q.empty()) {
int now = q.front();
q.pop();
for (Edge& edge : Graph[now]) {
if (edge.capacity > 0 && !check[edge.to]) {
check[edge.to] = true;
q.push(edge.to);
}
}
}
return check;
}
vector<tuple<int, int, ll>> min_cut_edges(int s) {
vector<bool> cut = min_cut(s);
vector<tuple<int, int, ll>> vec;
for (int from = 0; from < Graph.size(); from++) {
if (cut[from]) {
for (Edge& edge : Graph[from]) {
if (!cut[edge.to] && edge.init_capacity > 0) {
vec.push_back({ from,edge.to,edge.init_capacity });
}
}
}
}
return vec;
}
void reset() {
for (int from = 0; from < Graph.size(); from++) {
for (Edge& edge : Graph[from]) {
edge.capacity = edge.init_capacity;
}
}
}
};
//Dinic法でのmax-flow。最大マッチングなど辺のキャパシティが小さい場合には高速
struct Dinic {
struct Edge {
int to, rev;
ll capacity, init_capacity;
ld cost;
Edge(int _to, int _rev, ll _capacity,ld _cost) :to(_to), rev(_rev), capacity(_capacity),init_capacity(_capacity),cost(_cost) {};
};
vector<vector<Edge>> Graph;
Edge& rev_Edge(Edge& edge) {
return Graph[edge.to][edge.rev];
}
vector<int> level,itr;
Dinic(int MAX_V) {
Graph.assign(MAX_V, {});
}
void input(int _from, int _to, ll _capacity,ld _cost) {
int e_id = Graph[_from].size(), r_id = Graph[_to].size();
Graph[_from].push_back(Edge(_to, r_id, _capacity,_cost));
Graph[_to].push_back(Edge(_from, e_id, 0LL,_cost));
}
void bfs(int s, int g, ld val) {
level.assign(Graph.size(), -1);
level[s] = 0;
queue<int> q;
q.push(s);
while (!q.empty()) {
int now = q.front();
q.pop();
if (now == g) {
continue;
}
for (Edge &e : Graph[now]) {
if (level[e.to] == -1 && e.capacity > 0 && e.cost<=val) {
level[e.to] = level[now] + 1;
q.push(e.to);
}
}
}
}
ll dfs(int now, int g, ll flow, ld val) {
if (now == g) {
return flow;
}
else if (level[now] >= level[g]) {
return 0; //gよりも深い場所に行こうとしたら終わり。flow=0を返す
}
else {
ll res_flow = flow;
ll f = 0;
for (int &i = itr[now]; i < Graph[now].size(); i++) {
Edge& edge = Graph[now][i];
if (level[edge.to] == level[now] + 1 && edge.capacity > 0 && edge.cost<=val) {
ll f_delta = dfs(edge.to, g, min(res_flow, edge.capacity), val);
edge.capacity -= f_delta;
rev_Edge(edge).capacity += f_delta;
res_flow -= f_delta;
f += f_delta;
if (res_flow == 0) {
break;
}
}
}
return f; //行先が無い場合はflow=0を返す
}
}
void flowing(int s, int g, ll init_flow = INF, ld val=0) {
bool cont1 = true;
while (cont1) {
bfs(s, g,val);
if (level[g] == -1) {
cont1 = false;
}
else {
bool cont2 = true;
while (cont2) {
itr.assign(Graph.size(), 0);
ll flow = dfs(s, g, init_flow,val);
init_flow -= flow;
if (flow == 0) {
cont2 = false;
}
}
}
}
}
ll get_flow(int g) {
ll flow = 0;
for (Edge& edge : Graph[g]) {
flow += max(0LL, rev_Edge(edge).init_capacity - rev_Edge(edge).capacity);
}
return flow;
}
vector<tuple<int, int, ll>> flowing_edges(){
vector<tuple<int,int,ll>> vec;
for (int from = 0; from < Graph.size(); from++) {
for (Edge& edge : Graph[from]) {
if (edge.init_capacity - edge.capacity > 0) {
vec.push_back({ from,edge.to,edge.init_capacity - edge.capacity });
}
}
}
return vec;
}
vector<bool> min_cut(int s) {
vector<bool> check(Graph.size(), false);
queue<int> q;
q.push(s);
check[s] = true;
while (!q.empty()) {
int now = q.front();
q.pop();
for (Edge& edge : Graph[now]) {
if (edge.capacity > 0 && !check[edge.to]) {
check[edge.to] = true;
q.push(edge.to);
}
}
}
return check;
}
vector<tuple<int, int, ll>> min_cut_edges(int s) {
vector<bool> cut = min_cut(s);
vector<tuple<int, int, ll>> vec;
for (int from = 0; from < Graph.size(); from++) {
if (cut[from]) {
for (Edge& edge : Graph[from]) {
if (!cut[edge.to] && edge.init_capacity > 0) {
vec.push_back({ from,edge.to,edge.init_capacity });
}
}
}
}
return vec;
}
void reset() {
for (int from = 0; from < Graph.size(); from++) {
for (Edge& edge : Graph[from]) {
edge.capacity = edge.init_capacity;
}
}
}
};
int main() {
int N;
cin >> N;
map<int, map<int, map<int, ll>>> dp;
dp[0][0][0] = 0;
rep(i, N*2) {
char c;
ll L, R;
cin >> c >> L >> R;
for (auto &p : dp[i]) {
for (auto &q : p.second) {
int l = p.first;
int r = q.first;
ll m = q.second;
if (c == ')') {
if (r == 0) {
dp[i + 1][l + 1][0] = max(dp[i + 1][l + 1][0], m + max(L, R));
}
else {
if (r > 0) {
dp[i + 1][l][r - 1] = max(dp[i + 1][l][r - 1], m + R);
}
dp[i + 1][l + 1][r] = max(dp[i + 1][l + 1][r], m + L);
}
}
else {
if (l == 0) {
dp[i + 1][0][r + 1] = max(dp[i+1][0][r + 1], m + max(L, R));
}
else {
if (l > 0) {
dp[i + 1][l - 1][r] = max(dp[i + 1][l - 1][r], m + L);
}
dp[i + 1][l][r + 1] = max(dp[i + 1][l][r + 1], m + R);
}
}
}
}
}
cout << dp[N*2][0][0] << endl;
}