結果

問題 No.215 素数サイコロと合成数サイコロ (3-Hard)
ユーザー shinchan
提出日時 2025-04-29 23:58:02
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 1,306 ms / 4,000 ms
コード長 21,597 bytes
コンパイル時間 3,894 ms
コンパイル使用メモリ 238,204 KB
実行使用メモリ 22,844 KB
最終ジャッジ日時 2025-04-29 23:58:11
合計ジャッジ時間 8,493 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 2
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
#define all(v) (v).begin(),(v).end()
#define pb(a) push_back(a)
#define rep(i, n) for(int i=0;i<n;i++)
#define foa(e, v) for(auto&& e : v)
using ll = long long;
const ll MOD7 = 1000000007, MOD998 = 998244353, INF = (1LL << 60);
#define dout(a) cout<<fixed<<setprecision(10)<<a<<endl;

template<int MOD> struct Modint {
    long long val;
    constexpr Modint(long long v = 0) noexcept : val(v % MOD) { if (val < 0) val += MOD; }
    constexpr int mod() const { return MOD; }
    constexpr long long value() const { return val; }
    constexpr Modint operator - () const noexcept { return val ? MOD - val : 0; }
    constexpr Modint operator + (const Modint& r) const noexcept { return Modint(*this) += r; }
    constexpr Modint operator - (const Modint& r) const noexcept { return Modint(*this) -= r; }
    constexpr Modint operator * (const Modint& r) const noexcept { return Modint(*this) *= r; }
    constexpr Modint operator / (const Modint& r) const noexcept { return Modint(*this) /= r; }
    constexpr Modint& operator += (const Modint& r) noexcept {
        val += r.val;
        if (val >= MOD) val -= MOD;
        return *this;
    }
    constexpr Modint& operator -= (const Modint& r) noexcept {
        val -= r.val;
        if (val < 0) val += MOD;
        return *this;
    }
    constexpr Modint& operator *= (const Modint& r) noexcept {
        val = val * r.val % MOD;
        return *this;
    }
    constexpr Modint& operator /= (const Modint& r) noexcept {
        long long a = r.val, b = MOD, u = 1, v = 0;
        while (b) {
            long long t = a / b;
            a -= t * b, swap(a, b);
            u -= t * v, swap(u, v);
        }
        val = val * u % MOD;
        if (val < 0) val += MOD;
        return *this;
    }
    constexpr bool operator == (const Modint& r) const noexcept { return this->val == r.val; }
    constexpr bool operator != (const Modint& r) const noexcept { return this->val != r.val; }
    friend constexpr istream& operator >> (istream& is, Modint<MOD>& x) noexcept {
        is >> x.val;
        x.val %= MOD;
        if (x.val < 0) x.val += MOD;
        return is;
    }
    friend constexpr ostream& operator << (ostream& os, const Modint<MOD>& x) noexcept {
        return os << x.val;
    }
    constexpr Modint<MOD> pow(long long n) noexcept {
        if (n == 0) return 1;
        if (n < 0) return this->pow(-n).inv();
        Modint<MOD> ret = pow(n >> 1);
        ret *= ret;
        if (n & 1) ret *= *this;
        return ret;
    }
    constexpr Modint<MOD> inv() const noexcept {
        long long a = this->val, b = MOD, u = 1, v = 0;
        while (b) {
            long long t = a / b;
            a -= t * b, swap(a, b);
            u -= t * v, swap(u, v);
        }
        return Modint<MOD>(u);
    }
};

const int MOD = MOD7;
using mint = Modint<MOD>;

long long modinv(long long a, long long MOD) {
    long long b = MOD, u = 1, v = 0;
    while (b) {
        long long t = a / b;
        a -= t * b; std::swap(a, b);
        u -= t * v; std::swap(u, v);
    }
    u %= MOD; 
    if (u < 0) u += MOD;
    return u;
}

long long modpow(long long a, long long n, long long MOD) {
    long long res = 1;
    a %= MOD;
    if(n < 0) {
        n = -n;
        a = modinv(a, MOD);
    }
    while (n > 0) {
        if (n & 1) res = res * a % MOD;
        a = a * a % MOD;
        n >>= 1;
    }
    return res;
}

namespace NTT {
    int calc_primitive_root(int MOD) {
        if (MOD == 2) return 1;
        if (MOD == 167772161) return 3;
        if (MOD == 469762049) return 3;
        if (MOD == 754974721) return 11;
        if (MOD == 998244353) return 3;
        int divs[20] = {};
        divs[0] = 2;
        int cnt = 1;
        long long x = (MOD - 1) >> 1;
        while (x % 2 == 0) x >>= 1;
        for (long long i = 3; i * i <= x; i += 2) {
            if (x % i == 0) {
                divs[cnt ++] = i;
                while (x % i == 0) x /= i;
            }
        }
        if (x > 1) divs[cnt++] = x;
        for (int g = 2;; ++ g) {
            bool ok = true;
            for (int i = 0; i < cnt; i++) {
                if (modpow(g, (MOD - 1) / divs[i], MOD) == 1) {
                    ok = false;
                    break;
                }
            }
            if (ok) return g;
        }
    }

    int get_fft_size(int N, int M) {
        int size_a = 1, size_b = 1;
        while (size_a < N) size_a <<= 1;
        while (size_b < M) size_b <<= 1;
        return std::max(size_a, size_b) << 1;
    }

    template<class mint> void trans(std::vector<mint>& v, bool inv = false) {
        if (v.empty()) return;
        int N = (int) v.size();
        int MOD = v[0].mod();
        int PR = calc_primitive_root(MOD);
        static bool first = true;
        static std::vector<long long> vbw(30), vibw(30);
        if (first) {
            first = false;
            for (int k = 0; k < 30; ++ k) {
                vbw[k] = modpow(PR, (MOD - 1) >> (k + 1), MOD);
                vibw[k] = modinv(vbw[k], MOD);
            }
        }
        for (int i = 0, j = 1; j < N - 1; ++ j) {
            for (int k = N >> 1; k > (i ^= k); k >>= 1);
            if (i > j) std::swap(v[i], v[j]);
        }
        for (int k = 0, t = 2; t <= N; ++ k, t <<= 1) {
            long long bw = vbw[k];
            if (inv) bw = vibw[k];
            for (int i = 0; i < N; i += t) {
                mint w = 1;
                for (int j = 0; j < (t >> 1); ++ j) {
                    int j1 = i + j, j2 = i + j + (t >> 1);
                    mint c1 = v[j1], c2 = v[j2] * w;
                    v[j1] = c1 + c2;
                    v[j2] = c1 - c2;
                    w *= bw;
                }
            }
        }
        if (inv) {
            long long invN = modinv(N, MOD);
            for (int i = 0; i < N; ++ i) v[i] = v[i] * invN;
        }
    }

    static constexpr int MOD0 = 754974721;
    static constexpr int MOD1 = 167772161;
    static constexpr int MOD2 = 469762049;
    using mint0 = Modint<MOD0>;
    using mint1 = Modint<MOD1>;
    using mint2 = Modint<MOD2>;
    static const mint1 imod0 = 95869806; // modinv(MOD0, MOD1);
    static const mint2 imod1 = 104391568; // modinv(MOD1, MOD2);
    static const mint2 imod01 = 187290749; // imod1 / MOD0;

    // small case (T = mint, long long)
    template<class T> std::vector<T> naive_mul 
    (const std::vector<T>& A, const std::vector<T>& B) {
        if (A.empty() || B.empty()) return {};
        int N = (int) A.size(), M = (int) B.size();
        std::vector<T> res(N + M - 1);
        for (int i = 0; i < N; ++ i)
            for (int j = 0; j < M; ++ j)
                res[i + j] += A[i] * B[j];
        return res;
    }
};

// mint
template<class mint> std::vector<mint> convolution
(const std::vector<mint>& A, const std::vector<mint>& B) {
    if (A.empty() || B.empty()) return {};
    int N = (int) A.size(), M = (int) B.size();
    if (std::min(N, M) < 30) return NTT::naive_mul(A, B);
    int MOD = A[0].mod();
    int size_fft = NTT::get_fft_size(N, M);
    if (MOD == 998244353) {
        std::vector<mint> a(size_fft), b(size_fft), c(size_fft);
        for (int i = 0; i < N; ++i) a[i] = A[i];
        for (int i = 0; i < M; ++i) b[i] = B[i];
        NTT::trans(a), NTT::trans(b);
        std::vector<mint> res(size_fft);
        for (int i = 0; i < size_fft; ++i) res[i] = a[i] * b[i];
        NTT::trans(res, true);
        res.resize(N + M - 1);
        return res;
    }
    std::vector<NTT::mint0> a0(size_fft, 0), b0(size_fft, 0), c0(size_fft, 0);
    std::vector<NTT::mint1> a1(size_fft, 0), b1(size_fft, 0), c1(size_fft, 0);
    std::vector<NTT::mint2> a2(size_fft, 0), b2(size_fft, 0), c2(size_fft, 0);
    for (int i = 0; i < N; ++ i) {
        a0[i] = A[i].value();
        a1[i] = A[i].value();
        a2[i] = A[i].value();
    }
    for (int i = 0; i < M; ++ i) {
        b0[i] = B[i].value();
        b1[i] = B[i].value();
        b2[i] = B[i].value();
    }
    NTT::trans(a0), NTT::trans(a1), NTT::trans(a2), 
    NTT::trans(b0), NTT::trans(b1), NTT::trans(b2);
    for (int i = 0; i < size_fft; ++i) {
        c0[i] = a0[i] * b0[i];
        c1[i] = a1[i] * b1[i];
        c2[i] = a2[i] * b2[i];
    }
    NTT::trans(c0, true), NTT::trans(c1, true), NTT::trans(c2, true);
    static const mint mod0 = NTT::MOD0, mod01 = mod0 * NTT::MOD1;
    std::vector<mint> res(N + M - 1);
    for (int i = 0; i < N + M - 1; ++ i) {
        int y0 = c0[i].value();
        int y1 = (NTT::imod0 * (c1[i] - y0)).value();
        int y2 = (NTT::imod01 * (c2[i] - y0) - NTT::imod1 * y1).value();
        res[i] = mod01 * y2 + mod0 * y1 + y0;
    }
    return res;
}

// long long
std::vector<long long> convolution_ll
(const std::vector<long long>& A, const std::vector<long long>& B) {
    if (A.empty() || B.empty()) return {};
    int N = (int) A.size(), M = (int) B.size();
    if (std::min(N, M) < 30) return NTT::naive_mul(A, B);
    int size_fft = NTT::get_fft_size(N, M);
    std::vector<NTT::mint0> a0(size_fft, 0), b0(size_fft, 0), c0(size_fft, 0);
    std::vector<NTT::mint1> a1(size_fft, 0), b1(size_fft, 0), c1(size_fft, 0);
    std::vector<NTT::mint2> a2(size_fft, 0), b2(size_fft, 0), c2(size_fft, 0);
    for (int i = 0; i < N; ++ i) {
        a0[i] = A[i];
        a1[i] = A[i];
        a2[i] = A[i];
    }
    for (int i = 0; i < M; ++ i) {
        b0[i] = B[i];
        b1[i] = B[i];
        b2[i] = B[i];
    }
    NTT::trans(a0), NTT::trans(a1), NTT::trans(a2), 
    NTT::trans(b0), NTT::trans(b1), NTT::trans(b2);
    for (int i = 0; i < size_fft; ++ i) {
        c0[i] = a0[i] * b0[i];
        c1[i] = a1[i] * b1[i];
        c2[i] = a2[i] * b2[i];
    }
    NTT::trans(c0, true), NTT::trans(c1, true), NTT::trans(c2, true);
    static const long long mod0 = NTT::MOD0, mod01 = mod0 * NTT::MOD1;
    static const __int128_t mod012 = (__int128_t)mod01 * NTT::MOD2;
    std::vector<long long> res(N + M - 1);
    for (int i = 0; i < N + M - 1; ++ i) {
        int y0 = c0[i].value();
        int y1 = (NTT::imod0 * (c1[i] - y0)).value();
        int y2 = (NTT::imod01 * (c2[i] - y0) - NTT::imod1 * y1).value();
        __int128_t tmp = (__int128_t)mod01 * y2 + (__int128_t)mod0 * y1 + y0;
        if(tmp < (mod012 >> 1)) res[i] = tmp;
        else res[i] = tmp - mod012;
    }
    return res;
}

// depends on {modint.cpp}

template <typename mint> struct FPS : std::vector<mint> {
    using std::vector<mint>::vector;
 
    // constructor
    FPS(const std::vector<mint>& r) : std::vector<mint>(r) {}
 
    // core operator
    inline FPS pre(int siz) const {
        return FPS(begin(*this), begin(*this) + std::min((int)this->size(), siz));
    }
    inline FPS rev() const {
        FPS res = *this;
        reverse(begin(res), end(res));
        return res;
    }
    inline FPS& normalize() {
        while (!this->empty() && this->back() == 0) this->pop_back();
        return *this;
    }
 
    // basic operator
    inline FPS operator - () const noexcept {
        FPS res = (*this);
        for (int i = 0; i < (int)res.size(); ++i) res[i] = -res[i];
        return res;
    }
    inline FPS operator + (const mint& v) const { return FPS(*this) += v; }
    inline FPS operator + (const FPS& r) const { return FPS(*this) += r; }
    inline FPS operator - (const mint& v) const { return FPS(*this) -= v; }
    inline FPS operator - (const FPS& r) const { return FPS(*this) -= r; }
    inline FPS operator * (const mint& v) const { return FPS(*this) *= v; }
    inline FPS operator * (const FPS& r) const { return FPS(*this) *= r; }
    inline FPS operator / (const mint& v) const { return FPS(*this) /= v; }
    inline FPS operator << (int x) const { return FPS(*this) <<= x; }
    inline FPS operator >> (int x) const { return FPS(*this) >>= x; }
    inline FPS& operator += (const mint& v) {
        if (this->empty()) this->resize(1);
        (*this)[0] += v;
        return *this;
    }
    inline FPS& operator += (const FPS& r) {
        if (r.size() > this->size()) this->resize(r.size());
        for (int i = 0; i < (int)r.size(); ++i) (*this)[i] += r[i];
        return this->normalize();
    }
    inline FPS& operator -= (const mint& v) {
        if (this->empty()) this->resize(1);
        (*this)[0] -= v;
        return *this;
    }
    inline FPS& operator -= (const FPS& r) {
        if (r.size() > this->size()) this->resize(r.size());
        for (int i = 0; i < (int)r.size(); ++i) (*this)[i] -= r[i];
        return this->normalize();
    }
    inline FPS& operator *= (const mint& v) {
        for (int i = 0; i < (int)this->size(); ++i) (*this)[i] *= v;
        return *this;
    }
    inline FPS& operator *= (const FPS& r) {
        return *this = convolution((*this), r);
    }
    inline FPS& operator /= (const mint& v) {
        assert(v != 0);
        mint iv = v.inv();
        for (int i = 0; i < (int)this->size(); ++i) (*this)[i] *= iv;
        return *this;
    }
    inline FPS& operator <<= (int x) {
        FPS res(x, 0);
        res.insert(res.end(), begin(*this), end(*this));
        return *this = res;
    }
    inline FPS& operator >>= (int x) {
        if((int) this->size() <= x) return *this = FPS<mint> (1, 0);
        FPS res;
        res.insert(res.end(), begin(*this) + x, end(*this));
        return *this = res;
    }
    inline mint eval(const mint& v){
        mint res = 0;
        for (int i = (int)this->size()-1; i >= 0; --i) {
            res *= v;
            res += (*this)[i];
        }
        return res;
    }
    inline friend FPS gcd(const FPS& f, const FPS& g) {
        if (g.empty()) return f;
        return gcd(g, f % g);
    }
 
    // advanced operation
    // df/dx
    inline friend FPS diff(const FPS& f) {
        int n = (int)f.size();
        FPS res(n-1);
        for (int i = 1; i < n; ++i) res[i-1] = f[i] * i;
        return res;
    }
 
    // \int f dx
    inline friend FPS intg(const FPS& f) {
        int n = (int)f.size();
        FPS res(n+1, 0);
        for (int i = 0; i < n; ++i) res[i+1] = f[i] / (i+1);
        return res;
    }
 
    // inv(f), f[0] must not be 0
    inline friend FPS inv(const FPS& f, int deg) {
        assert(f[0] != 0);
        if (deg < 0) deg = (int)f.size();
        FPS res({mint(1) / f[0]});
        for (int i = 1; i < deg; i <<= 1) {
            res = (res + res - res * res * f.pre(i << 1)).pre(i << 1);
        }
        res.resize(deg);
        return res;
    }
    inline friend FPS inv(const FPS& f) {
        return inv(f, f.size());
    }
 
    // division, r must be normalized (r.back() must not be 0)
    inline FPS& operator /= (const FPS& r) {
        assert(!r.empty());
        assert(r.back() != 0);
        this->normalize();
        if (this->size() < r.size()) {
            this->clear();
            return *this;
        }
        int need = (int)this->size() - (int)r.size() + 1;
        *this = ((*this).rev().pre(need) * inv(r.rev(), need)).pre(need).rev();
        return *this;
    }
    inline FPS& operator %= (const FPS &r) {
        assert(!r.empty());
        assert(r.back() != 0);
        this->normalize();
        FPS q = (*this) / r;
        return *this -= q * r;
    }
    inline FPS operator / (const FPS& r) const { return FPS(*this) /= r; }
    inline FPS operator % (const FPS& r) const { return FPS(*this) %= r; }
 
    // log(f) = \int f'/f dx, f[0] must be 1
    inline friend FPS log(const FPS& f, int deg) {
        assert(f[0] == 1);
        FPS res = intg(diff(f) * inv(f, deg));
        res.resize(deg);
        return res;
    }
    inline friend FPS log(const FPS& f) {
        return log(f, f.size());
    }
 
    // exp(f), f[0] must be 0
    inline friend FPS exp(const FPS& f, int deg) {
        assert(f[0] == 0);
        FPS res(1, 1);
        for (int i = 1; i < deg; i <<= 1) {
            res = res * (f.pre(i<<1) - log(res, i<<1) + 1).pre(i<<1);
        }
        res.resize(deg);
        return res;
    }
    inline friend FPS exp(const FPS& f) {
        return exp(f, f.size());
    }
 
    // pow(f) = exp(e * log f)
    inline friend FPS pow(const FPS& f, long long e, int deg) {
        if(e == 0) {
            auto ret = FPS(deg, 0);
            ret[0] = 1;
            return ret;
        }
        long long i = 0;
        while (i < (int)f.size() && f[i] == 0) ++i;
        if (i == (int)f.size()) return FPS(deg, 0);
        if ((i >= 1 and e >= deg) or i * e >= deg) return FPS(deg, 0);
        mint k = f[i];
        FPS res = exp(log((f >> i) / k, deg) * e, deg) * k.pow(e) << (e * i);
        res.resize(deg);
        return res;
    }
    inline friend FPS pow(const FPS& f, long long e) {
        return pow(f, e, f.size());
    }

    inline friend FPS taylor_shift(FPS f, mint a) {
        int n = f.size();
        std::vector<mint> fac(n, 1), inv(n, 1), finv(n, 1);
        int mod = mint::mod();
        for(int i = 2; i < n; i ++) {
            fac[i] = fac[i - 1] * i;
            inv[i] = -inv[mod % i] * (mod / i);
            finv[i] = finv[i - 1] * inv[i];
        }
        for(int i = 0; i < n; i ++) f[i] *= fac[i];
        std::reverse(f.begin(), f.end());
        FPS<mint> g(n, 1);
        for(int i = 1; i < n; i ++) g[i] = g[i - 1] * a * inv[i];
        f = (f * g).pre(n);
        std::reverse(f.begin(), f.end());
        for(int i = 0; i < n; i ++) f[i] *= finv[i];
        return f;
    }
};

template <typename mint> FPS<mint> modpow(const FPS<mint> &f, long long n, const FPS<mint> &m) {
    if (n == 0) return FPS<mint>(1, 1);
    auto t = modpow(f, n / 2, m);
    t = (t * t) % m;
    if (n & 1) t = (t * f) % m;
    return t;
}

vector<mint> BerlekampMassey(const vector<mint> &s) {
  const int N = (int)s.size();
  vector<mint> b, c;
  b.reserve(N + 1);
  c.reserve(N + 1);
  b.push_back(mint(1));
  c.push_back(mint(1));
  mint y = mint(1);
  for (int ed = 1; ed <= N; ed++) {
    int l = int(c.size()), m = int(b.size());
    mint x = 0;
    for (int i = 0; i < l; i++) x += c[i] * s[ed - l + i];
    b.emplace_back(mint(0));
    m++;
    if (x == mint(0)) continue;
    mint freq = x / y;
    if (l < m) {
      auto tmp = c;
      c.insert(begin(c), m - l, mint(0));
      for (int i = 0; i < m; i++) c[m - 1 - i] -= freq * b[m - 1 - i];
      b = tmp;
      y = x;
    } else {
      for (int i = 0; i < m; i++) c[l - 1 - i] -= freq * b[m - 1 - i];
    }
  }
  reverse(begin(c), end(c));
  return c;
}


// Bostan-Mori
// find [x^N] P(x)/Q(x), O(K log K log N)
// deg(Q(x)) = K, deg(P(x)) < K, Q[0] = 1
template <typename mint> mint BostanMori(const FPS<mint> &P, const FPS<mint> &Q, long long N) {
    assert(!P.empty() && !Q.empty());
    if (N == 0) return P[0] / Q[0];
    
    int qdeg = (int)Q.size();
    FPS<mint> P2{P}, minusQ{Q};
    P2.resize(qdeg - 1);
    for (int i = 1; i < (int)Q.size(); i += 2) minusQ[i] = -minusQ[i];
    P2 *= minusQ;
    FPS<mint> Q2 = Q * minusQ;
    FPS<mint> S(qdeg - 1), T(qdeg);
    for (int i = 0; i < (int)S.size(); ++i) {
        S[i] = (N % 2 == 0 ? P2[i * 2] : P2[i * 2 + 1]);
    }
    for (int i = 0; i < (int)T.size(); ++i) {
        T[i] = Q2[i * 2];
    }
    return BostanMori(S, T, N >> 1);
}

// find [x^[[n, n + m)] P(x)/Q(x), O(k log k log n)
template <typename mint> FPS<mint> BostanMori(FPS<mint> P, FPS<mint> Q, long long n, long long m) {
    Q.normalize();
    int d = Q.size() - 1;
    auto add = P / Q;
    P -= add * Q;
    
    if(n >= (1LL << 30)) add = FPS<mint>(1, 0);
    else add >>= n;
    
    auto rec = [&](auto& rec, FPS<mint> q, ll n) -> FPS<mint> {
        if(n <= max(1, d)) {
            q.resize(n + d);
            auto ret = inv(q);
            return FPS<mint>{ret.begin() + n, ret.end()};
        }
        FPS<mint> minus{q};
        for (int i = 1; i < (int)q.size(); i += 2) minus[i] = -minus[i];
        auto v2 = minus * q;
        FPS<mint> v(d + 1);
        for (int i = 0; i < (int)v.size(); i ++) v[i] = v2[i * 2];
        int par = (n - d) & 1;
        ll nx = (n - d + par) >> 1;
        FPS<mint> ret = rec(rec, v, nx);
        
        FPS<mint> ret2(d * 2);
        for(int i = 0; i < d; i ++) ret2[i * 2] = ret[i];
        auto f = minus * ret2;
        return FPS<mint> {f.begin() + (d - par), f.begin() + (d - par) + d};
    };
    FPS<mint> f = rec(rec, Q, n) * Q;
    f.resize(d);
    (f *= P) %= Q;
    Q.resize(m);
    f *= inv(Q);
    f += add;
    f.resize(m);
    return f; 
}

vector<mint> calc(vector<ll> to, ll n, ll sz) {
    vector dp(n + 1, vector<ll> (sz, 0LL));
    dp[0][0] = 1;
    foa(e, to) {
        for(int i = 0; i < n; i ++) {
            for(int j = 0; j + e < sz; j ++) {
                dp[i + 1][j + e] += dp[i][j];
                if(dp[i + 1][j + e] >= MOD7) dp[i + 1][j + e] -= MOD7;
            }
        }
    }
    
    auto tmp = dp.back();
    while(!tmp.empty() and tmp.back() == 0) tmp.pop_back();
    vector<mint> ret(tmp.begin(), tmp.end());
    return ret;
}
int main() {
    cin.tie(0);
    ios::sync_with_stdio(false);
    ll n, p, c; cin >> n >> p >> c;
    vector<ll> v1 = {2, 3, 5, 7, 11, 13};
    vector<ll> v2 = {4, 6, 8, 9, 10, 12};
    ll N = 1LL << 12;
    auto dp1 = calc(v1, p, N);
    auto dp2 = calc(v2, c, N);
    auto naive = convolution(dp1, dp2);
    
    FPS<mint> a{naive};
    N = a.size();
    rep(i, N) a[i] = -a[i];
    a[0] = 1; 
    FPS<mint> P(1, 1);
    ll Min = max(0LL, n - N);
    auto ret = BostanMori(P, a, Min, n - Min);
    mint ans = 0;
    auto con = convolution(ret, naive);
    int sz = con.size();
    rep(i, sz) {
        if(i + Min >= n) ans += con[i];
    }
    cout << ans << endl;
    return 0;
}
0