結果
問題 |
No.3169 [Cherry 7th Tune] Desire for Approval
|
ユーザー |
👑 ![]() |
提出日時 | 2025-05-01 03:15:17 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 4,447 ms / 7,000 ms |
コード長 | 13,027 bytes |
コンパイル時間 | 1,337 ms |
コンパイル使用メモリ | 91,828 KB |
実行使用メモリ | 50,304 KB |
最終ジャッジ日時 | 2025-05-30 21:09:22 |
合計ジャッジ時間 | 91,372 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 46 |
ソースコード
#include <iostream> #include <vector> #include <algorithm> #include <utility> using namespace std; #define rep(i,n) for(int i=0; i<(int)(n); i++) using i64 = long long; using u64 = unsigned long long; #ifdef USE_ATCODER_LIBRARY #include <atcoder/modint> using Modint = atcoder::static_modint<998244353>; #include <atcoder/convolution> namespace nachia{ template<class Modint> std::vector<Modint> Convolution( const std::vector<Modint>& A, const std::vector<Modint>& B ){ return atcoder::convolution(A, B); } } #else #include <cassert> namespace nachia{ // ax + by = gcd(a,b) // return ( x, - ) std::pair<long long, long long> ExtGcd(long long a, long long b){ long long x = 1, y = 0; while(b){ long long u = a / b; std::swap(a-=b*u, b); std::swap(x-=y*u, y); } return std::make_pair(x, a); } } // namespace nachia namespace nachia{ template<unsigned int MOD> struct StaticModint{ private: using u64 = unsigned long long; unsigned int x; public: using my_type = StaticModint; template< class Elem > static Elem safe_mod(Elem x){ if(x < 0){ if(0 <= x+MOD) return x + MOD; return MOD - ((-(x+MOD)-1) % MOD + 1); } return x % MOD; } StaticModint() : x(0){} StaticModint(const my_type& a) : x(a.x){} StaticModint& operator=(const my_type&) = default; template< class Elem > StaticModint(Elem v) : x(safe_mod(v)){} unsigned int operator*() const { return x; } my_type& operator+=(const my_type& r) { auto t = x + r.x; if(t >= MOD) t -= MOD; x = t; return *this; } my_type operator+(const my_type& r) const { my_type res = *this; return res += r; } my_type& operator-=(const my_type& r) { auto t = x + MOD - r.x; if(t >= MOD) t -= MOD; x = t; return *this; } my_type operator-(const my_type& r) const { my_type res = *this; return res -= r; } my_type operator-() const noexcept { my_type res = *this; res.x = ((res.x == 0) ? 0 : (MOD - res.x)); return res; } my_type& operator*=(const my_type& r){ x = (u64)x * r.x % MOD; return *this; } my_type operator*(const my_type& r) const { my_type res = *this; return res *= r; } bool operator==(const my_type& r) const { return x == r.x; } my_type pow(unsigned long long i) const { my_type a = *this, res = 1; while(i){ if(i & 1){ res *= a; } a *= a; i >>= 1; } return res; } my_type inv() const { return my_type(ExtGcd(x, MOD).first); } unsigned int val() const { return x; } int hval() const { return int(x > MOD/2 ? x - MOD : x); } static constexpr unsigned int mod() { return MOD; } static my_type raw(unsigned int val) { auto res = my_type(); res.x = val; return res; } my_type& operator/=(const my_type& r){ return operator*=(r.inv()); } my_type operator/(const my_type& r) const { return operator*(r.inv()); } }; } // namespace nachia using Modint = nachia::StaticModint<998244353>; namespace nachia{ template<unsigned int MOD> struct PrimitiveRoot{ using u64 = unsigned long long; static constexpr u64 powm(u64 a, u64 i) { u64 res = 1, aa = a; for( ; i; i /= 2){ if(i & 1) res = res * aa % MOD; aa = aa * aa % MOD; } return res; } static constexpr bool ExamineVal(unsigned int g){ u64 t = MOD - 1; for(u64 d=2; d*d<=t; d+=1+(d&1)) if(t % d == 0){ if(powm(g, (MOD - 1) / d) == 1) return false; while(t % d == 0) t /= d; } if(t != 1) if(powm(g, (MOD - 1) / t) == 1) return false; return true; } static constexpr unsigned int GetVal(){ for(u64 x=2; x<MOD; x++) if(ExamineVal(x)) return x; return 0; } static const unsigned int val = GetVal(); }; } // namespace nachia namespace nachia{ int Popcount(unsigned long long c) noexcept { #ifdef __GNUC__ return __builtin_popcountll(c); #else c = (c & (~0ull/3)) + ((c >> 1) & (~0ull/3)); c = (c & (~0ull/5)) + ((c >> 2) & (~0ull/5)); c = (c & (~0ull/17)) + ((c >> 4) & (~0ull/17)); c = (c * (~0ull/257)) >> 56; return c; #endif } // please ensure x != 0 int MsbIndex(unsigned long long x) noexcept { #ifdef __GNUC__ return 63 - __builtin_clzll(x); #else using u64 = unsigned long long; int q = (x >> 32) ? 32 : 0; auto m = x >> q; constexpr u64 hi = 0x88888888; constexpr u64 mi = 0x11111111; m = (((m | ~(hi - (m & ~hi))) & hi) * mi) >> 35; m = (((m | ~(hi - (m & ~hi))) & hi) * mi) >> 31; q += (m & 0xf) << 2; q += 0x3333333322221100 >> (((x >> q) & 0xf) << 2) & 0xf; return q; #endif } // please ensure x != 0 int LsbIndex(unsigned long long x) noexcept { #ifdef __GNUC__ return __builtin_ctzll(x); #else return MsbIndex(x & -x); #endif } } namespace nachia { template<class mint> struct NttInterface{ template<class Iter> void Butterfly(Iter, int) const {} template<class Iter> void IButterfly(Iter, int) const {} template<class Iter> void BitReversal(Iter a, int N) const { for(int i=0, j=0; j<N; j++){ if(i < j) std::swap(a[i], a[j]); for(int k = N>>1; k > (i^=k); k>>=1); } } }; } // namespace nachia #include <iterator> #include <array> namespace nachia{ template <class mint> struct Ntt : NttInterface<mint> { using u32 = unsigned int; using u64 = unsigned long long; static int ceil_pow2(int n) { int x = 0; while ((1U << x) < (u32)(n)) x++; return x; } static constexpr int bsf_constexpr(unsigned int n) { int x = 0; while (!(n & (1 << x))) x++; return x; } struct fft_info { static constexpr u32 g = nachia::PrimitiveRoot<mint::mod()>::val; static constexpr int rank2 = bsf_constexpr(mint::mod()-1); using RootTable = std::array<mint, rank2+1>; RootTable root, iroot, rate3, irate3; fft_info(){ root[rank2] = mint(g).pow((mint::mod() - 1) >> rank2); iroot[rank2] = root[rank2].inv(); for(int i=rank2-1; i>=0; i--){ root[i] = root[i+1] * root[i+1]; iroot[i] = iroot[i+1] * iroot[i+1]; } mint prod = 1, iprod = 1; for(int i=0; i<=rank2-3; i++){ rate3[i] = root[i+3] * prod; irate3[i] = iroot[i+3] * iprod; prod *= iroot[i+3]; iprod *= root[i+3]; } } }; template<class RandomAccessIterator> void ButterflyLayered(RandomAccessIterator a, int n, int stride, int repeat) const { static const fft_info info; int h = n * stride; while(repeat--){ int len = 1; int p = h; if(ceil_pow2(n)%2 == 1){ p >>= 1; for(int i=0; i<p; i++){ mint l = a[i], r = a[i+p]; a[i] = l+r; a[i+p] = l-r; } len <<= 1; } for( ; p > stride; ){ p >>= 2; mint rot = 1, imag = info.root[2]; u64 mod2 = u64(mint::mod()) * mint::mod(); int offset = p; for(int s=0; s<len; s++){ if(s) rot *= info.rate3[LsbIndex(~(u32)(s-1))]; mint rot2 = rot * rot; mint rot3 = rot2 * rot; for(int i=offset-p; i<offset; i++){ u64 a0 = u64(a[i].val()); u64 a1 = u64(a[i+p].val()) * rot.val(); u64 a2 = u64(a[i+2*p].val()) * rot2.val(); u64 a3 = u64(a[i+3*p].val()) * rot3.val(); u64 a1na3imag = u64(mint(a1 + mod2 - a3).val()) * imag.val(); u64 na2 = mod2 - a2; a[i] = a0 + a2 + a1 + a3; a[i+1*p] = a0 + a2 + (2 * mod2 - (a1 + a3)); a[i+2*p] = a0 + na2 + a1na3imag; a[i+3*p] = a0 + na2 + (mod2 - a1na3imag); } offset += p << 2; } len <<= 2; } a += h; } } template<class RandomAccessIterator> void Butterfly(RandomAccessIterator a, int n) const { ButterflyLayered(a, n, 1, 1); } template<class RandomAccessIterator> void IButterflyLayered(RandomAccessIterator a, int n, int stride, int repeat) const { static const fft_info info; constexpr int MOD = mint::mod(); while(repeat--){ int len = n; int p = stride; for( ; 2 < len; ){ len >>= 2; mint irot = 1, iimag = info.iroot[2]; int offset = p; for(int s=0; s<len; s++){ if(s) irot *= info.irate3[LsbIndex(~(u32)(s-1))]; mint irot2 = irot * irot; mint irot3 = irot2 * irot; for(int i=offset-p; i<offset; i++){ u64 a0 = a[i].val(); u64 a1 = a[i+p].val(); u64 a2 = a[i+2*p].val(); u64 a3 = a[i+3*p].val(); u64 a2na3iimag = mint((a2 + MOD - a3) * iimag.val()).val(); a[i] = a0 + a1 + a2 + a3; a[i+p] = (a0 + (MOD - a1) + a2na3iimag) * irot.val(); a[i+2*p] = (a0 + a1 + (MOD - a2) + (MOD - a3)) * irot2.val(); a[i+3*p] = (a0 + (MOD - a1) + (MOD - a2na3iimag)) * irot3.val(); } offset += p << 2; } p <<= 2; } if(len == 2){ for(int i=0; i<p; i++){ mint l = a[i], r = a[i+p]; a[i] = l+r; a[i+p] = l-r; } p <<= 1; } a += p; } } template<class RandomAccessIterator> void IButterfly(RandomAccessIterator a, int n) const { IButterflyLayered(a, n, 1, 1); } }; } // namespace nachia namespace nachia{ template<class Modint> std::vector<Modint> Convolution( const std::vector<Modint>& A, const std::vector<Modint>& B ){ int n = A.size(); int m = B.size(); if(n <= 40 || m <= 40){ if(n+m == 0) return std::vector<Modint>(0); std::vector<Modint> C(n+m-1); for(int i=0; i<n; i++) for(int j=0; j<m; j++){ C[i+j] += A[i] * B[j]; } return C; } int g = 1; while(g < n+m-1) g *= 2; std::vector<Modint> C(g); for(int i=0; i<n; i++) C[i] = A[i]; Ntt<Modint> ntt; ntt.Butterfly(C.begin(), g); std::vector<Modint> D(g); for(int i=0; i<m; i++) D[i] = B[i]; ntt.Butterfly(D.begin(), g); Modint w = Modint(g).inv(); for(int i=0; i<g; i++) C[i] *= D[i] * w; ntt.IButterfly(C.begin(), g); C.resize(n+m-1); return C; } } // namespace nachia #endif struct ExpPoly { std::vector<Modint> A; Modint e; // x to infty ExpPoly indefIntegral(){ auto B = A; ExpPoly res; res.e = e; Modint ie = e.inv(); for(int i=int(A.size()-1); i>=0; i--){ B[i] *= ie; if(i) B[i-1] -= B[i] * i; } for(auto& b : B) b = -b; swap(res.A, B); return res; } Modint defIntegral(){ return indefIntegral().A[0]; } ExpPoly operator*(const ExpPoly& r) const { ExpPoly res; res.e = e + r.e; res.A = nachia::Convolution(A, r.A); return res; } }; //string fracformat(Modint x){ // if(x.val() == 0) return "0"; // for(int i=1; ; i++){ // Modint y = x * Modint::raw(i); // if(y.val() <= 100000) return to_string(y.val()) + "/" + to_string(i); // if(998244353 - y.val() <= 100000) return to_string(int(y.val()) - 998244353) + "/" + to_string(i); // } //} //void outExpPoly(const ExpPoly& a){ // cout << "( "; // rep(i,a.A.size()){ // if(i) cout << " + "; // cout << fracformat(a.A[i]) << " x^" << i; // } // cout << " ) e^" << fracformat(a.e) << endl; //} int main(){ cin.tie(nullptr); ios::sync_with_stdio(false); i64 N; cin >> N; vector<ExpPoly> F(N), G(N); rep(i,N){ i64 k, a; cin >> k >> a; Modint t = Modint(a).pow(k); for(i64 i=1; i<=k-1; i++) t *= i; F[i].A.resize(k); F[i].A[k-1] = t.inv(); F[i].e = -Modint(a).inv(); G[i] = F[i].indefIntegral(); } vector<ExpPoly> prodG(1<<N); prodG[0].A.push_back(1); prodG[0].e = 0; rep(b,N) rep(i,1<<b) prodG[i|(1<<b)] = prodG[i] * G[b]; //for(auto a : F){ outExpPoly(a); } cout << endl; //for(auto a : G){ outExpPoly(a); } cout << endl; //for(auto a : prodG){ outExpPoly(a); } cout << endl; vector<Modint> fact(100); fact[0] = 1; rep(i,100) if(i) fact[i] = fact[i-1] * i; auto comb = [&](i64 a, i64 b){ return fact[a] / (fact[b] * fact[a-b]); }; vector<Modint> mp(N); rep(s,N) rep(t,1<<N) if(!(t&(1<<s))){ int pc = __builtin_popcountll(t); auto prodGF = prodG[t] * F[s]; prodGF.A.insert(prodGF.A.begin(), 0); Modint q = prodGF.defIntegral(); //cout << "s = " << s << " , t = " << t << " , q = " << fracformat(q) << endl << " "; outExpPoly(prodGF); mp[N-1-pc] += q; } for(int i=N-1; i>=0; i--) rep(j,i) mp[i] += mp[j] * comb(N-1-j,N-1-i) * Modint(-1).pow(abs(i-j)); rep(i,N){ if(i) cout << " "; cout << mp[i].val(); } cout << endl; return 0; }