結果
問題 | No.3134 二分探索木 |
ユーザー |
|
提出日時 | 2025-05-02 21:34:12 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 186 ms / 2,000 ms |
コード長 | 9,609 bytes |
コンパイル時間 | 4,220 ms |
コンパイル使用メモリ | 309,972 KB |
実行使用メモリ | 62,052 KB |
最終ジャッジ日時 | 2025-05-02 21:34:19 |
合計ジャッジ時間 | 6,939 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 5 |
other | AC * 15 |
ソースコード
// #include <bits/allocator.h> // Temp fix for gcc13 global pragma // #pragma GCC target("avx2,bmi2,popcnt,lzcnt") // #pragma GCC optimize("O3,unroll-loops") #include <bits/stdc++.h> // #include <x86intrin.h> using namespace std; #if __cplusplus >= 202002L using namespace numbers; #endif #ifdef LOCAL #include "Debug.h" #else #define debug_endl() 42 #define debug(...) 42 #define debug2(...) 42 #define debug_bin(...) 42 #endif template<class T> struct graph{ using Weight_t = T; struct Edge_t{ int from, to; T cost; Edge_t &inplace_flip(){ swap(from, to); return *this; } Edge_t flip() const{ return (*this).inplace_flip(); } }; int n; vector<Edge_t> edge; vector<vector<int>> adj; function<bool(int)> ignore; graph(int n = 1): n(n), adj(n){ assert(n >= 1); } graph(const vector<vector<int>> &adj, bool undirected = true): n((int)adj.size()), adj(n){ assert(n >= 1); if(undirected){ for(auto u = 0; u < n; ++ u) for(auto v: adj[u]) if(u < v) link(u, v); } else for(auto u = 0; u < n; ++ u) for(auto v: adj[u]) orient(u, v); } graph(const vector<vector<pair<int, T>>> &adj, bool undirected = true): n((int)adj.size()), adj(n){ assert(n >= 1); if(undirected){ for(auto u = 0; u < n; ++ u) for(auto [v, w]: adj[u]) if(u < v) link(u, v, w); } else for(auto u = 0; u < n; ++ u) for(auto [v, w]: adj[u]) orient(u, v, w); } graph(int n, vector<array<int, 2>> &edge, bool undirected = true): n(n), adj(n){ assert(n >= 1); for(auto [u, v]: edge) undirected ? link(u, v) : orient(u, v); } graph(int n, vector<tuple<int, int, T>> &edge, bool undirected = true): n(n), adj(n){ assert(n >= 1); for(auto [u, v, w]: edge) undirected ? link(u, v, w) : orient(u, v, w); } int add_vertex(){ adj.emplace_back(); return n ++; } int operator()(int u, int id) const{ #ifdef LOCAL assert(0 <= id && id < (int)edge.size()); assert(edge[id].from == u || edge[id].to == u); #endif return u ^ edge[id].from ^ edge[id].to; } int link(int u, int v, T w = {}){ // insert an undirected edge int id = (int)edge.size(); adj[u].push_back(id), adj[v].push_back(id), edge.push_back({u, v, w}); return id; } int orient(int u, int v, T w = {}){ // insert a directed edge int id = (int)edge.size(); adj[u].push_back(id), edge.push_back({u, v, w}); return id; } vector<int> neighbor(int u, int exclude = -1) const{ vector<int> res; for(auto id: adj[u]){ if(id == exclude || ignore && ignore(id)) continue; res.push_back(operator()(u, id)); } return res; } vector<pair<int, T>> weighted_neighbor(int u, int exclude = -1) const{ vector<pair<int, T>> res; for(auto id: adj[u]){ if(id == exclude || ignore && ignore(id)) continue; res.push_back({operator()(u, id), edge[id].cost}); } return res; } void clear(){ for(auto [u, v, w]: edge){ adj[u].clear(); adj[v].clear(); } edge.clear(); ignore = {}; } graph transpose() const{ // the transpose of the directed graph graph res(n); for(auto id = 0; id < (int)edge.size(); ++ id){ if(ignore && ignore(id)) continue; res.orient(edge[id].to, edge[id].from, edge[id].cost); } return res; } int degree(int u) const{ // the degree (outdegree if directed) of u (without the ignoration rule) return (int)adj[u].size(); } // The adjacency list is sorted for each vertex. vector<vector<int>> get_adjacency_list() const{ vector<vector<int>> res(n); for(auto u = 0; u < n; ++ u) for(auto id: adj[u]){ if(ignore && ignore(id)) continue; res[(*this)(u, id)].push_back(u); } return res; } void set_ignoration_rule(const function<bool(int)> &f){ ignore = f; } void reset_ignoration_rule(){ ignore = nullptr; } friend ostream &operator<<(ostream &out, const graph &g){ for(auto id = 0; id < (int)g.edge.size(); ++ id){ if(g.ignore && g.ignore(id)) continue; auto &e = g.edge[id]; out << "{" << e.from << ", " << e.to << ", " << e.cost << "}\n"; } return out; } }; // Requires graph template<class T, int level> struct dfs_forest{ static_assert(0 <= level && level <= 2); int n; vector<int> pv; vector<int> pe; vector<int> order; vector<int> pos; vector<int> end; vector<int> size; vector<int> depth; vector<int> root_of; vector<int> root; vector<T> dist; vector<int> min_depth; vector<int> min_depth_origin; vector<int> min_depth_spanning_edge; // extra_edge[u]: adjacent edges of u which is not part of the spanning forest found during the last dfs-like run. vector<vector<int>> extra_edge; vector<int> was; void init(int n){ this->n = n; pv.resize(n, -1); pe.resize(n, -1); if constexpr(level >= 2) for(auto u: order){ extra_edge[u].clear(); extra_edge[u].shrink_to_fit(); } order.clear(); pos.resize(n, -1); end.resize(n, -1); size.resize(n, 0); depth.resize(n, -1); if constexpr(level >= 1){ root_of.resize(n, -1); root.clear(); dist.resize(n); } if constexpr(level >= 2){ min_depth.resize(n, -1); min_depth_origin.resize(n, -1); min_depth_spanning_edge.resize(n, -1); extra_edge.resize(n, {}); } was.resize(n, -2); } int attempt = -1; // O(# of nodes reachable from u) template<class U, class F> void _dfs(const graph<U> &g, int u, F UT, T base_dist){ depth[u] = 0; pv[u] = pe[u] = -1; if constexpr(level >= 1){ dist[u] = base_dist; root_of[u] = u; root.push_back(u); } auto recurse = [&](auto self, int u)->void{ was[u] = attempt; pos[u] = (int)order.size(); order.push_back(u); size[u] = 1; if constexpr(level >= 2){ min_depth[u] = depth[u]; min_depth_origin[u] = u; min_depth_spanning_edge[u] = -1; extra_edge[u].clear(); } for(auto id: g.adj[u]){ if(id == pe[u] || g.ignore && g.ignore(id)) continue; int v = g(u, id); if(was[v] == attempt){ if constexpr(level >= 2){ if(min_depth[u] > depth[v]){ min_depth[u] = depth[v]; min_depth_spanning_edge[u] = id; } if(pe[v] != id) extra_edge[u].push_back(id); } continue; } depth[v] = depth[u] + 1; pv[v] = u; pe[v] = id; if constexpr(level >= 1){ dist[v] = UT(g.edge[id].cost, dist[u]); root_of[v] = root_of[u]; } self(self, v); size[u] += size[v]; if constexpr(level >= 2) if(min_depth[u] > min_depth[v]){ min_depth[u] = min_depth[v]; min_depth_origin[u] = min_depth_origin[v]; min_depth_spanning_edge[u] = min_depth_spanning_edge[v]; } } end[u] = (int)order.size(); }; recurse(recurse, u); } // O(# of nodes reachable from src) template<class U, class F = plus<>> void dfs(const graph<U> &g, const vector<int> &src, F UT = plus<>(), T base_dist = T{}){ init(g.n); ++ attempt; for(auto u: src){ assert(0 <= u && u < n); if(was[u] != attempt) _dfs(g, u, UT, base_dist); } } // O(n + m) template<class U, class F = plus<>> void dfs_all(const graph<U> &g, F UT = plus<>(), T base_dist = T{}){ init(g.n); ++ attempt; for(auto u = 0; u < n; ++ u) if(was[u] != attempt) _dfs(g, u, UT, base_dist); } // Check if u is visited during the last dfs-like call. bool visited(int u) const{ assert(0 <= u && u < n); return was[u] == attempt; } // Check if u is an ancestor of v in some spanning tree. bool ancestor_of(int u, int v) const{ assert(visited(u) && visited(v)); return pos[u] <= pos[v] && end[v] <= end[u]; } vector<int> get_path(int u, int v) const{ assert(visited(u) && visited(v)); vector<int> left, right; while(u != v && ~pv[u] && ~pv[v]){ if(depth[u] >= depth[v]){ left.push_back(u); u = pv[u]; } else{ right.push_back(v); v = pv[v]; } } assert(u == v); left.push_back(u); left.insert(left.end(), right.rbegin(), right.rend()); return left; } // Check if any cycle is found during the last dfs-like call. // If must_contain_root = true, the sought cycle is forced to contain one of the root of the trees. template<class U> optional<pair<int, vector<int>>> find_any_cycle(const graph<U> &g, bool must_contain_root = false) const{ static_assert(level >= 2); for(auto u: order) for(auto id: extra_edge[u]){ int v = g(u, id); if(!ancestor_of(v, u) || must_contain_root && root_of[v] != v) continue; vector<int> cycle_edge; while(u != v) cycle_edge.push_back(pe[u]), u = pv[u]; reverse(cycle_edge.begin(), cycle_edge.end()); cycle_edge.push_back(id); return pair{v, cycle_edge}; } return {}; } }; // pv, pe, order, pos, end, size, depth template<class T> auto make_basic_dfs_forest(){ return dfs_forest<T, 0>(); } // (basic_set), root_of, root, dist template<class T> auto make_augmented_dfs_forest(){ return dfs_forest<T, 1>(); } // (augmented_set), min_depth, min_depth_origin, min_depth_spanning_edge, extra_edge template<class T> auto make_full_dfs_forest(){ return dfs_forest<T, 2>(); } int main(){ cin.tie(0)->sync_with_stdio(0); cin.exceptions(ios::badbit | ios::failbit); int n; cin >> n; vector<int> a(n); copy_n(istream_iterator<int>(cin), n, a.begin()); set<pair<int, int>> s{{a[0], 0}}; graph<int> g(n); for(auto [i, x]: a | ranges::views::enumerate | ranges::views::drop(1)){ auto it = s.lower_bound({x, i}); if(it == s.begin() || it != s.end() && prev(it)->second < it->second){ g.orient(it->second, i); } else{ g.orient(prev(it)->second, i); } s.insert(it, {x, i}); } auto df = make_basic_dfs_forest<int>(); df.dfs(g, {0}); for(auto u = 0; u < n; ++ u){ cout << df.depth[u] << " "; } cout << "\n"; for(auto u = 0; u < n; ++ u){ cout << df.size[u] - 1 << " "; } cout << "\n"; return 0; } /* */