結果

問題 No.3134 二分探索木
ユーザー kidodesu
提出日時 2025-05-02 22:09:55
言語 PyPy3
(7.3.15)
結果
TLE  
実行時間 -
コード長 6,105 bytes
コンパイル時間 430 ms
コンパイル使用メモリ 82,912 KB
実行使用メモリ 234,860 KB
最終ジャッジ日時 2025-05-02 22:10:15
合計ジャッジ時間 13,994 ms
ジャッジサーバーID
(参考情報)
judge4 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 5
other AC * 12 TLE * 3
権限があれば一括ダウンロードができます

ソースコード

diff #

# https://github.com/tatyam-prime/SortedSet/blob/main/SortedSet.py
import math
from bisect import bisect_left, bisect_right
from typing import Generic, Iterable, Iterator, TypeVar
T = TypeVar('T')

class SortedSet(Generic[T]):
    BUCKET_RATIO = 16
    SPLIT_RATIO = 24
    
    def __init__(self, a: Iterable[T] = []) -> None:
        "Make a new SortedSet from iterable. / O(N) if sorted and unique / O(N log N)"
        a = list(a)
        n = len(a)
        if any(a[i] > a[i + 1] for i in range(n - 1)):
            a.sort()
        if any(a[i] >= a[i + 1] for i in range(n - 1)):
            a, b = [], a
            for x in b:
                if not a or a[-1] != x:
                    a.append(x)
        n = self.size = len(a)
        num_bucket = int(math.ceil(math.sqrt(n / self.BUCKET_RATIO)))
        self.a = [a[n * i // num_bucket : n * (i + 1) // num_bucket] for i in range(num_bucket)]

    def __iter__(self) -> Iterator[T]:
        for i in self.a:
            for j in i: yield j

    def __reversed__(self) -> Iterator[T]:
        for i in reversed(self.a):
            for j in reversed(i): yield j
    
    def __eq__(self, other) -> bool:
        return list(self) == list(other)
    
    def __len__(self) -> int:
        return self.size
    
    def __repr__(self) -> str:
        return "SortedSet" + str(self.a)
    
    def __str__(self) -> str:
        s = str(list(self))
        return "{" + s[1 : len(s) - 1] + "}"

    def _position(self, x: T) -> tuple[list[T], int, int]:
        "return the bucket, index of the bucket and position in which x should be. self must not be empty."
        for i, a in enumerate(self.a):
            if x <= a[-1]: break
        return (a, i, bisect_left(a, x))

    def __contains__(self, x: T) -> bool:
        if self.size == 0: return False
        a, _, i = self._position(x)
        return i != len(a) and a[i] == x

    def add(self, x: T) -> bool:
        "Add an element and return True if added. / O(√N)"
        if self.size == 0:
            self.a = [[x]]
            self.size = 1
            return True
        a, b, i = self._position(x)
        if i != len(a) and a[i] == x: return False
        a.insert(i, x)
        self.size += 1
        if len(a) > len(self.a) * self.SPLIT_RATIO:
            mid = len(a) >> 1
            self.a[b:b+1] = [a[:mid], a[mid:]]
        return True
    
    def _pop(self, a: list[T], b: int, i: int) -> T:
        ans = a.pop(i)
        self.size -= 1
        if not a: del self.a[b]
        return ans

    def discard(self, x: T) -> bool:
        "Remove an element and return True if removed. / O(√N)"
        if self.size == 0: return False
        a, b, i = self._position(x)
        if i == len(a) or a[i] != x: return False
        self._pop(a, b, i)
        return True
    
    def lt(self, x: T) -> T | None:
        "Find the largest element < x, or None if it doesn't exist."
        for a in reversed(self.a):
            if a[0] < x:
                return a[bisect_left(a, x) - 1]

    def le(self, x: T) -> T | None:
        "Find the largest element <= x, or None if it doesn't exist."
        for a in reversed(self.a):
            if a[0] <= x:
                return a[bisect_right(a, x) - 1]

    def gt(self, x: T) -> T | None:
        "Find the smallest element > x, or None if it doesn't exist."
        for a in self.a:
            if a[-1] > x:
                return a[bisect_right(a, x)]

    def ge(self, x: T) -> T | None:
        "Find the smallest element >= x, or None if it doesn't exist."
        for a in self.a:
            if a[-1] >= x:
                return a[bisect_left(a, x)]
    
    def __getitem__(self, i: int) -> T:
        "Return the i-th element."
        if i < 0:
            for a in reversed(self.a):
                i += len(a)
                if i >= 0: return a[i]
        else:
            for a in self.a:
                if i < len(a): return a[i]
                i -= len(a)
        raise IndexError
    
    def pop(self, i: int = -1) -> T:
        "Pop and return the i-th element."
        if i < 0:
            for b, a in enumerate(reversed(self.a)):
                i += len(a)
                if i >= 0: return self._pop(a, ~b, i)
        else:
            for b, a in enumerate(self.a):
                if i < len(a): return self._pop(a, b, i)
                i -= len(a)
        raise IndexError
    
    def index(self, x: T) -> int:
        "Count the number of elements < x."
        ans = 0
        for a in self.a:
            if a[-1] >= x:
                return ans + bisect_left(a, x)
            ans += len(a)
        return ans

    def index_right(self, x: T) -> int:
        "Count the number of elements <= x."
        ans = 0
        for a in self.a:
            if a[-1] > x:
                return ans + bisect_right(a, x)
            ans += len(a)
        return ans

n = int(input())
A = list(map(int, input().split()))
lst = [[-1, -1, -1] for _ in range(n)]
id = 0

N = [[] for _ in range(n)]
R = [[] for _ in range(n)]

lst[0][0] = A[0]
id = 1
D = {A[i]: i for i in range(n)}
F = {A[0]: (0, 0)}
O = SortedSet([])
O.add(A[0])

from bisect import *

for i in range(1, n):
    a = A[i]
    ind = bisect(O, a)
    c0 = (-1, -1)
    c1 = (-1, -1)
    if 0 <= ind-1 < len(O):
        a0 = O[ind-1]
        c0 = F[a0]
    if 0 <= ind < len(O):
        a1 = O[ind]
        c1 = F[a1]
    if c0[0] < c1[0]:
        now = c1[1]
        le = c1[0]
    else:
        now = c0[1]
        le = c0[0]
    pa, l, r = lst[now]
    if pa < a:
        N[D[pa]].append(i)
        R[i].append(D[pa])
        lst[now][2] = id
        lst[id][0] = a
        id += 1
    else:
        N[D[pa]].append(i)
        R[i].append(D[pa])
        lst[now][1] = id
        lst[id][0] = a
        id += 1
    O.add(a)
    F[a] = (le + 1, id-1)

B = [0] * n
C = [1] * n
S = [0]
E = []
while S:
    now = S.pop()
    E.append(now)
    for nxt in N[now]:
        B[nxt] = B[now] + 1
        S.append(nxt)

for e in E[::-1]:
    for nxt in R[e]:
        C[nxt] += C[e]

for i in range(n):
    C[i] -= 1

print(*B)
print(*C)
0