結果
問題 |
No.3134 二分探索木
|
ユーザー |
![]() |
提出日時 | 2025-05-02 22:09:55 |
言語 | PyPy3 (7.3.15) |
結果 |
TLE
|
実行時間 | - |
コード長 | 6,105 bytes |
コンパイル時間 | 430 ms |
コンパイル使用メモリ | 82,912 KB |
実行使用メモリ | 234,860 KB |
最終ジャッジ日時 | 2025-05-02 22:10:15 |
合計ジャッジ時間 | 13,994 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 5 |
other | AC * 12 TLE * 3 |
ソースコード
# https://github.com/tatyam-prime/SortedSet/blob/main/SortedSet.py import math from bisect import bisect_left, bisect_right from typing import Generic, Iterable, Iterator, TypeVar T = TypeVar('T') class SortedSet(Generic[T]): BUCKET_RATIO = 16 SPLIT_RATIO = 24 def __init__(self, a: Iterable[T] = []) -> None: "Make a new SortedSet from iterable. / O(N) if sorted and unique / O(N log N)" a = list(a) n = len(a) if any(a[i] > a[i + 1] for i in range(n - 1)): a.sort() if any(a[i] >= a[i + 1] for i in range(n - 1)): a, b = [], a for x in b: if not a or a[-1] != x: a.append(x) n = self.size = len(a) num_bucket = int(math.ceil(math.sqrt(n / self.BUCKET_RATIO))) self.a = [a[n * i // num_bucket : n * (i + 1) // num_bucket] for i in range(num_bucket)] def __iter__(self) -> Iterator[T]: for i in self.a: for j in i: yield j def __reversed__(self) -> Iterator[T]: for i in reversed(self.a): for j in reversed(i): yield j def __eq__(self, other) -> bool: return list(self) == list(other) def __len__(self) -> int: return self.size def __repr__(self) -> str: return "SortedSet" + str(self.a) def __str__(self) -> str: s = str(list(self)) return "{" + s[1 : len(s) - 1] + "}" def _position(self, x: T) -> tuple[list[T], int, int]: "return the bucket, index of the bucket and position in which x should be. self must not be empty." for i, a in enumerate(self.a): if x <= a[-1]: break return (a, i, bisect_left(a, x)) def __contains__(self, x: T) -> bool: if self.size == 0: return False a, _, i = self._position(x) return i != len(a) and a[i] == x def add(self, x: T) -> bool: "Add an element and return True if added. / O(√N)" if self.size == 0: self.a = [[x]] self.size = 1 return True a, b, i = self._position(x) if i != len(a) and a[i] == x: return False a.insert(i, x) self.size += 1 if len(a) > len(self.a) * self.SPLIT_RATIO: mid = len(a) >> 1 self.a[b:b+1] = [a[:mid], a[mid:]] return True def _pop(self, a: list[T], b: int, i: int) -> T: ans = a.pop(i) self.size -= 1 if not a: del self.a[b] return ans def discard(self, x: T) -> bool: "Remove an element and return True if removed. / O(√N)" if self.size == 0: return False a, b, i = self._position(x) if i == len(a) or a[i] != x: return False self._pop(a, b, i) return True def lt(self, x: T) -> T | None: "Find the largest element < x, or None if it doesn't exist." for a in reversed(self.a): if a[0] < x: return a[bisect_left(a, x) - 1] def le(self, x: T) -> T | None: "Find the largest element <= x, or None if it doesn't exist." for a in reversed(self.a): if a[0] <= x: return a[bisect_right(a, x) - 1] def gt(self, x: T) -> T | None: "Find the smallest element > x, or None if it doesn't exist." for a in self.a: if a[-1] > x: return a[bisect_right(a, x)] def ge(self, x: T) -> T | None: "Find the smallest element >= x, or None if it doesn't exist." for a in self.a: if a[-1] >= x: return a[bisect_left(a, x)] def __getitem__(self, i: int) -> T: "Return the i-th element." if i < 0: for a in reversed(self.a): i += len(a) if i >= 0: return a[i] else: for a in self.a: if i < len(a): return a[i] i -= len(a) raise IndexError def pop(self, i: int = -1) -> T: "Pop and return the i-th element." if i < 0: for b, a in enumerate(reversed(self.a)): i += len(a) if i >= 0: return self._pop(a, ~b, i) else: for b, a in enumerate(self.a): if i < len(a): return self._pop(a, b, i) i -= len(a) raise IndexError def index(self, x: T) -> int: "Count the number of elements < x." ans = 0 for a in self.a: if a[-1] >= x: return ans + bisect_left(a, x) ans += len(a) return ans def index_right(self, x: T) -> int: "Count the number of elements <= x." ans = 0 for a in self.a: if a[-1] > x: return ans + bisect_right(a, x) ans += len(a) return ans n = int(input()) A = list(map(int, input().split())) lst = [[-1, -1, -1] for _ in range(n)] id = 0 N = [[] for _ in range(n)] R = [[] for _ in range(n)] lst[0][0] = A[0] id = 1 D = {A[i]: i for i in range(n)} F = {A[0]: (0, 0)} O = SortedSet([]) O.add(A[0]) from bisect import * for i in range(1, n): a = A[i] ind = bisect(O, a) c0 = (-1, -1) c1 = (-1, -1) if 0 <= ind-1 < len(O): a0 = O[ind-1] c0 = F[a0] if 0 <= ind < len(O): a1 = O[ind] c1 = F[a1] if c0[0] < c1[0]: now = c1[1] le = c1[0] else: now = c0[1] le = c0[0] pa, l, r = lst[now] if pa < a: N[D[pa]].append(i) R[i].append(D[pa]) lst[now][2] = id lst[id][0] = a id += 1 else: N[D[pa]].append(i) R[i].append(D[pa]) lst[now][1] = id lst[id][0] = a id += 1 O.add(a) F[a] = (le + 1, id-1) B = [0] * n C = [1] * n S = [0] E = [] while S: now = S.pop() E.append(now) for nxt in N[now]: B[nxt] = B[now] + 1 S.append(nxt) for e in E[::-1]: for nxt in R[e]: C[nxt] += C[e] for i in range(n): C[i] -= 1 print(*B) print(*C)