結果
問題 |
No.8038 フィボナッチ数列の周期
|
ユーザー |
![]() |
提出日時 | 2025-05-03 09:31:04 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 104 ms / 3,000 ms |
コード長 | 27,077 bytes |
コンパイル時間 | 3,773 ms |
コンパイル使用メモリ | 257,948 KB |
実行使用メモリ | 7,844 KB |
最終ジャッジ日時 | 2025-05-03 09:31:10 |
合計ジャッジ時間 | 6,205 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 25 |
ソースコード
#line 1 "library/Template/template.hpp" #include <bits/stdc++.h> using namespace std; #define rep(i, a, b) for (int i = (int)(a); i < (int)(b); i++) #define rrep(i, a, b) for (int i = (int)(b)-1; i >= (int)(a); i--) #define ALL(v) (v).begin(), (v).end() #define UNIQUE(v) sort(ALL(v)), (v).erase(unique(ALL(v)), (v).end()) #define SZ(v) (int)v.size() #define MIN(v) *min_element(ALL(v)) #define MAX(v) *max_element(ALL(v)) #define LB(v, x) int(lower_bound(ALL(v), (x)) - (v).begin()) #define UB(v, x) int(upper_bound(ALL(v), (x)) - (v).begin()) using uint = unsigned int; using ll = long long int; using ull = unsigned long long; using i128 = __int128_t; using u128 = __uint128_t; const int inf = 0x3fffffff; const ll INF = 0x1fffffffffffffff; template <typename T, typename S = T> S SUM(const vector<T> &a) { return accumulate(ALL(a), S(0)); } template <typename S, typename T = S> S POW(S a, T b) { S ret = 1, base = a; for (;;) { if (b & 1) ret *= base; b >>= 1; if (b == 0) break; base *= base; } return ret; } template <typename T> inline bool chmax(T &a, T b) { if (a < b) { a = b; return 1; } return 0; } template <typename T> inline bool chmin(T &a, T b) { if (a > b) { a = b; return 1; } return 0; } template <typename T, typename U> T ceil(T x, U y) { assert(y != 0); if (y < 0) x = -x, y = -y; return (x > 0 ? (x + y - 1) / y : x / y); } template <typename T, typename U> T floor(T x, U y) { assert(y != 0); if (y < 0) x = -x, y = -y; return (x > 0 ? x / y : (x - y + 1) / y); } template <typename T> int popcnt(T x) { return __builtin_popcountll(x); } template <typename T> int topbit(T x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } template <typename T> int lowbit(T x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } template <class T, class U> ostream &operator<<(ostream &os, const pair<T, U> &p) { os << "P(" << p.first << ", " << p.second << ")"; return os; } template <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) { os << "{"; for (int i = 0; i < vec.size(); i++) { os << vec[i] << (i + 1 == vec.size() ? "" : ", "); } os << "}"; return os; } template <typename T, typename U> ostream &operator<<(ostream &os, const map<T, U> &map_var) { os << "{"; for (auto itr = map_var.begin(); itr != map_var.end(); itr++) { os << "(" << itr->first << ", " << itr->second << ")"; itr++; if (itr != map_var.end()) os << ", "; itr--; } os << "}"; return os; } template <typename T> ostream &operator<<(ostream &os, const set<T> &set_var) { os << "{"; for (auto itr = set_var.begin(); itr != set_var.end(); itr++) { os << *itr; ++itr; if (itr != set_var.end()) os << ", "; itr--; } os << "}"; return os; } #ifdef LOCAL #define debug 1 #define show(...) _show(0, #__VA_ARGS__, __VA_ARGS__) #else #define debug 0 #define show(...) true #endif template <typename T> void _show(int i, T name) { cerr << '\n'; } template <typename T1, typename T2, typename... T3> void _show(int i, const T1 &a, const T2 &b, const T3 &...c) { for (; a[i] != ',' && a[i] != '\0'; i++) cerr << a[i]; cerr << ":" << b << " "; _show(i + 1, a, c...); } #line 2 "library/Utility/fastio.hpp" #include <unistd.h> namespace fastio { static constexpr uint32_t SZ = 1 << 17; char ibuf[SZ]; char obuf[SZ]; char out[100]; // pointer of ibuf, obuf uint32_t pil = 0, pir = 0, por = 0; struct Pre { char num[10000][4]; constexpr Pre() : num() { for (int i = 0; i < 10000; i++) { int n = i; for (int j = 3; j >= 0; j--) { num[i][j] = n % 10 | '0'; n /= 10; } } } } constexpr pre; inline void load() { memmove(ibuf, ibuf + pil, pir - pil); pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin); pil = 0; if (pir < SZ) ibuf[pir++] = '\n'; } inline void flush() { fwrite(obuf, 1, por, stdout); por = 0; } void rd(char &c) { do { if (pil + 1 > pir) load(); c = ibuf[pil++]; } while (isspace(c)); } void rd(string &x) { x.clear(); char c; do { if (pil + 1 > pir) load(); c = ibuf[pil++]; } while (isspace(c)); do { x += c; if (pil == pir) load(); c = ibuf[pil++]; } while (!isspace(c)); } template <typename T> void rd_real(T &x) { string s; rd(s); x = stod(s); } template <typename T> void rd_integer(T &x) { if (pil + 100 > pir) load(); char c; do c = ibuf[pil++]; while (c < '-'); bool minus = 0; if constexpr (is_signed<T>::value || is_same_v<T, i128>) { if (c == '-') { minus = 1, c = ibuf[pil++]; } } x = 0; while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; } if constexpr (is_signed<T>::value || is_same_v<T, i128>) { if (minus) x = -x; } } void rd(int &x) { rd_integer(x); } void rd(ll &x) { rd_integer(x); } void rd(i128 &x) { rd_integer(x); } void rd(uint &x) { rd_integer(x); } void rd(ull &x) { rd_integer(x); } void rd(u128 &x) { rd_integer(x); } void rd(double &x) { rd_real(x); } void rd(long double &x) { rd_real(x); } template <class T, class U> void rd(pair<T, U> &p) { return rd(p.first), rd(p.second); } template <size_t N = 0, typename T> void rd_tuple(T &t) { if constexpr (N < std::tuple_size<T>::value) { auto &x = std::get<N>(t); rd(x); rd_tuple<N + 1>(t); } } template <class... T> void rd(tuple<T...> &tpl) { rd_tuple(tpl); } template <size_t N = 0, typename T> void rd(array<T, N> &x) { for (auto &d : x) rd(d); } template <class T> void rd(vector<T> &x) { for (auto &d : x) rd(d); } void read() {} template <class H, class... T> void read(H &h, T &...t) { rd(h), read(t...); } void wt(const char c) { if (por == SZ) flush(); obuf[por++] = c; } void wt(const string s) { for (char c : s) wt(c); } void wt(const char *s) { size_t len = strlen(s); for (size_t i = 0; i < len; i++) wt(s[i]); } template <typename T> void wt_integer(T x) { if (por > SZ - 100) flush(); if (x < 0) { obuf[por++] = '-', x = -x; } int outi; for (outi = 96; x >= 10000; outi -= 4) { memcpy(out + outi, pre.num[x % 10000], 4); x /= 10000; } if (x >= 1000) { memcpy(obuf + por, pre.num[x], 4); por += 4; } else if (x >= 100) { memcpy(obuf + por, pre.num[x] + 1, 3); por += 3; } else if (x >= 10) { int q = (x * 103) >> 10; obuf[por] = q | '0'; obuf[por + 1] = (x - q * 10) | '0'; por += 2; } else obuf[por++] = x | '0'; memcpy(obuf + por, out + outi + 4, 96 - outi); por += 96 - outi; } template <typename T> void wt_real(T x) { ostringstream oss; oss << fixed << setprecision(15) << double(x); string s = oss.str(); wt(s); } void wt(int x) { wt_integer(x); } void wt(ll x) { wt_integer(x); } void wt(i128 x) { wt_integer(x); } void wt(uint x) { wt_integer(x); } void wt(ull x) { wt_integer(x); } void wt(u128 x) { wt_integer(x); } void wt(double x) { wt_real(x); } void wt(long double x) { wt_real(x); } template <class T, class U> void wt(const pair<T, U> val) { wt(val.first); wt(' '); wt(val.second); } template <size_t N = 0, typename T> void wt_tuple(const T t) { if constexpr (N < std::tuple_size<T>::value) { if constexpr (N > 0) { wt(' '); } const auto x = std::get<N>(t); wt(x); wt_tuple<N + 1>(t); } } template <class... T> void wt(tuple<T...> tpl) { wt_tuple(tpl); } template <class T, size_t S> void wt(const array<T, S> val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) wt(' '); wt(val[i]); } } template <class T> void wt(const vector<T> val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) wt(' '); wt(val[i]); } } void print() { wt('\n'); } template <class Head, class... Tail> void print(Head &&head, Tail &&...tail) { wt(head); if (sizeof...(Tail)) wt(' '); print(forward<Tail>(tail)...); } void __attribute__((destructor)) _d() { flush(); } } // namespace fastio using fastio::flush; using fastio::print; using fastio::read; inline void first(bool i = true) { print(i ? "first" : "second"); } inline void Alice(bool i = true) { print(i ? "Alice" : "Bob"); } inline void Takahashi(bool i = true) { print(i ? "Takahashi" : "Aoki"); } inline void yes(bool i = true) { print(i ? "yes" : "no"); } inline void Yes(bool i = true) { print(i ? "Yes" : "No"); } inline void No() { print("No"); } inline void YES(bool i = true) { print(i ? "YES" : "NO"); } inline void NO() { print("NO"); } inline void Yay(bool i = true) { print(i ? "Yay!" : ":("); } inline void Possible(bool i = true) { print(i ? "Possible" : "Impossible"); } inline void POSSIBLE(bool i = true) { print(i ? "POSSIBLE" : "IMPOSSIBLE"); } /** * @brief Fast IO */ #line 2 "library/Utility/random.hpp" namespace Random { mt19937_64 randgen(chrono::steady_clock::now().time_since_epoch().count()); using u64 = unsigned long long; u64 get() { return randgen(); } template <typename T> T get(T L) { // [0,L] return get() % (L + 1); } template <typename T> T get(T L, T R) { // [L,R] return get(R - L) + L; } double uniform() { return double(get(1000000000)) / 1000000000; } string str(int n) { string ret; rep(i, 0, n) ret += get('a', 'z'); return ret; } template <typename Iter> void shuffle(Iter first, Iter last) { if (first == last) return; int len = 1; for (auto it = first + 1; it != last; it++) { len++; int j = get(0, len - 1); if (j != len - 1) iter_swap(it, first + j); } } template <typename T> vector<T> select(int n, T L, T R) { // [L,R] if (n * 2 >= R - L + 1) { vector<T> ret(R - L + 1); iota(ALL(ret), L); shuffle(ALL(ret)); ret.resize(n); return ret; } else { unordered_set<T> used; vector<T> ret; while (SZ(used) < n) { T x = get(L, R); if (!used.count(x)) { used.insert(x); ret.push_back(x); } } return ret; } } void relabel(int n, vector<pair<int, int>> &es) { shuffle(ALL(es)); vector<int> ord(n); iota(ALL(ord), 0); shuffle(ALL(ord)); for (auto &[u, v] : es) u = ord[u], v = ord[v]; } template <bool directed, bool simple> vector<pair<int, int>> genGraph(int n, int m) { vector<pair<int, int>> cand, es; rep(u, 0, n) rep(v, 0, n) { if (simple and u == v) continue; if (!directed and u > v) continue; cand.push_back({u, v}); } if (m == -1) m = get(SZ(cand)); chmin(m, SZ(cand)); vector<int> ord; if (simple) ord = select(m, 0, SZ(cand) - 1); else { rep(_, 0, m) ord.push_back(get(SZ(cand) - 1)); } for (auto &i : ord) es.push_back(cand[i]); relabel(n, es); return es; } vector<pair<int, int>> genTree(int n) { vector<pair<int, int>> es; rep(i, 1, n) es.push_back({get(i - 1), i}); relabel(n, es); return es; } }; // namespace Random /** * @brief Random */ #line 4 "sol.cpp" #line 2 "library/Math/fastdiv.hpp" struct FastDiv { using u64 = uint64_t; using u128 = __uint128_t; constexpr FastDiv() : m(), s(), x() {} constexpr FastDiv(int _m) : m(_m), s(__lg(m - 1)), x(((u128(1) << (s + 64)) + m - 1) / m) {} constexpr int get() { return m; } constexpr friend u64 operator/(u64 n, const FastDiv &d) { return (u128(n) * d.x >> d.s) >> 64; } constexpr friend int operator%(u64 n, const FastDiv &d) { return n - n / d * d.m; } constexpr pair<u64, int> divmod(u64 n) const { u64 q = n / (*this); return {q, n - q * m}; } int m, s; u64 x; }; struct FastDiv64 { using u64 = uint64_t; using u128 = __uint128_t; u128 mod, mh, ml; explicit FastDiv64(u64 mod = 1) : mod(mod) { u128 m = u128(-1) / mod; if (m * mod + mod == u128(0)) ++m; mh = m >> 64; ml = m & u64(-1); } u64 umod() const { return mod; } u64 modulo(u128 x) { u128 z = (x & u64(-1)) * ml; z = (x & u64(-1)) * mh + (x >> 64) * ml + (z >> 64); z = (x >> 64) * mh + (z >> 64); x -= z * mod; return x < mod ? x : x - mod; } u64 mul(u64 a, u64 b) { return modulo(u128(a) * b); } }; /** * @brief Fast Division */ #line 3 "library/Math/dynamic.hpp" struct Fp { using u64 = uint64_t; uint v; static uint get_mod() { return _getmod(); } static void set_mod(uint _m) { bar = FastDiv(_m); } Fp inv() const { int tmp, a = v, b = get_mod(), x = 1, y = 0; while (b) { tmp = a / b, a -= tmp * b; swap(a, b); x -= tmp * y; swap(x, y); } if (x < 0) { x += get_mod(); } return x; } Fp() : v(0) {} Fp(ll x) { v = x % get_mod(); if (v < 0) v += get_mod(); } Fp operator-() const { return Fp() - *this; } Fp pow(ll t) { assert(t >= 0); Fp res = 1, b = *this; while (t) { if (t & 1) res *= b; b *= b; t >>= 1; } return res; } Fp &operator+=(const Fp &x) { v += x.v; if (v >= get_mod()) v -= get_mod(); return *this; } Fp &operator-=(const Fp &x) { v += get_mod() - x.v; if (v >= get_mod()) v -= get_mod(); return *this; } Fp &operator*=(const Fp &x) { v = (u64(v) * x.v) % bar; return *this; } Fp &operator/=(const Fp &x) { (*this) *= x.inv(); return *this; } Fp operator+(const Fp &x) const { return Fp(*this) += x; } Fp operator-(const Fp &x) const { return Fp(*this) -= x; } Fp operator*(const Fp &x) const { return Fp(*this) *= x; } Fp operator/(const Fp &x) const { return Fp(*this) /= x; } bool operator==(const Fp &x) const { return v == x.v; } bool operator!=(const Fp &x) const { return v != x.v; } friend istream &operator>>(istream &is, Fp &x) { return is >> x.v; } friend ostream &operator<<(ostream &os, const Fp &x) { return os << x.v; } private: static FastDiv bar; static uint _getmod() { return bar.get(); } }; FastDiv Fp::bar(998244353); void rd(Fp &x) { fastio::rd(x.v); } void wt(Fp x) { fastio::wt(x.v); } /** * @brief Dynamic Modint */ #line 2 "library/Math/matrix.hpp" template <class T> struct Matrix { int h, w; vector<vector<T>> val; T det; Matrix() {} Matrix(int n) : h(n), w(n), val(vector<vector<T>>(n, vector<T>(n))) {} Matrix(int n, int m) : h(n), w(m), val(vector<vector<T>>(n, vector<T>(m))) {} vector<T> &operator[](const int i) { return val[i]; } Matrix &operator+=(const Matrix &m) { assert(h == m.h and w == m.w); rep(i, 0, h) rep(j, 0, w) val[i][j] += m.val[i][j]; return *this; } Matrix &operator-=(const Matrix &m) { assert(h == m.h and w == m.w); rep(i, 0, h) rep(j, 0, w) val[i][j] -= m.val[i][j]; return *this; } Matrix &operator*=(const Matrix &m) { assert(w == m.h); Matrix<T> res(h, m.w); rep(i, 0, h) rep(j, 0, m.w) rep(k, 0, w) res.val[i][j] += val[i][k] * m.val[k][j]; *this = res; return *this; } Matrix operator+(const Matrix &m) const { return Matrix(*this) += m; } Matrix operator-(const Matrix &m) const { return Matrix(*this) -= m; } Matrix operator*(const Matrix &m) const { return Matrix(*this) *= m; } Matrix pow(ll k) { Matrix<T> res(h, h), c = *this; rep(i, 0, h) res.val[i][i] = 1; while (k) { if (k & 1) res *= c; c *= c; k >>= 1; } return res; } vector<int> gauss(int c = -1) { det = 1; if (val.empty()) return {}; if (c == -1) c = w; int cur = 0; vector<int> res; rep(i, 0, c) { if (cur == h) break; rep(j, cur, h) if (val[j][i] != 0) { swap(val[cur], val[j]); if (cur != j) det *= -1; break; } det *= val[cur][i]; if (val[cur][i] == 0) continue; rep(j, 0, h) if (j != cur) { T z = val[j][i] / val[cur][i]; rep(k, i, w) val[j][k] -= val[cur][k] * z; } res.push_back(i); cur++; } return res; } Matrix inv() { assert(h == w); Matrix base(h, h * 2), res(h, h); rep(i, 0, h) rep(j, 0, h) base[i][j] = val[i][j]; rep(i, 0, h) base[i][h + i] = 1; base.gauss(h); det = base.det; rep(i, 0, h) rep(j, 0, h) res[i][j] = base[i][h + j] / base[i][i]; return res; } bool operator==(const Matrix &m) { assert(h == m.h and w == m.w); rep(i, 0, h) rep(j, 0, w) if (val[i][j] != m.val[i][j]) return false; return true; } bool operator!=(const Matrix &m) { assert(h == m.h and w == m.w); rep(i, 0, h) rep(j, 0, w) if (val[i][j] == m.val[i][j]) return false; return true; } friend istream &operator>>(istream &is, Matrix &m) { rep(i, 0, m.h) rep(j, 0, m.w) is >> m[i][j]; return is; } friend ostream &operator<<(ostream &os, Matrix &m) { rep(i, 0, m.h) { rep(j, 0, m.w) os << m[i][j] << (j == m.w - 1 and i != m.h - 1 ? '\n' : ' '); } return os; } }; /** * @brief Matrix */ #line 2 "library/Math/miller.hpp" struct m64 { using i64 = int64_t; using u64 = uint64_t; using u128 = __uint128_t; static u64 mod; static u64 r; static u64 n2; static u64 get_r() { u64 ret = mod; rep(_,0,5) ret *= 2 - mod * ret; return ret; } static void set_mod(u64 m) { assert(m < (1LL << 62)); assert((m & 1) == 1); mod = m; n2 = -u128(m) % m; r = get_r(); assert(r * mod == 1); } static u64 get_mod() { return mod; } u64 a; m64() : a(0) {} m64(const int64_t &b) : a(reduce((u128(b) + mod) * n2)){}; static u64 reduce(const u128 &b) { return (b + u128(u64(b) * u64(-r)) * mod) >> 64; } u64 get() const { u64 ret = reduce(a); return ret >= mod ? ret - mod : ret; } m64 &operator*=(const m64 &b) { a = reduce(u128(a) * b.a); return *this; } m64 operator*(const m64 &b) const { return m64(*this) *= b; } bool operator==(const m64 &b) const { return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a); } bool operator!=(const m64 &b) const { return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a); } m64 pow(u128 n) const { m64 ret(1), mul(*this); while (n > 0) { if (n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } }; typename m64::u64 m64::mod, m64::r, m64::n2; bool Miller(ll n){ if(n<2 or (n&1)==0)return (n==2); m64::set_mod(n); ll d=n-1; while((d&1)==0)d>>=1; vector<ll> seeds; if(n<(1<<30))seeds={2, 7, 61}; else seeds={2, 325, 9375, 28178, 450775, 9780504}; for(auto& x:seeds){ if(n<=x)break; ll t=d; m64 y=m64(x).pow(t); while(t!=n-1 and y!=1 and y!=n-1){ y*=y; t<<=1; } if(y!=n-1 and (t&1)==0)return 0; } return 1; } /** * @brief Miller-Rabin */ #line 4 "library/Math/pollard.hpp" vector<ll> Pollard(ll n) { if (n <= 1) return {}; if (Miller(n)) return {n}; if ((n & 1) == 0) { vector<ll> v = Pollard(n >> 1); v.push_back(2); return v; } for (ll x = 2, y = 2, d;;) { ll c = Random::get(2LL, n - 1); do { x = (__int128_t(x) * x + c) % n; y = (__int128_t(y) * y + c) % n; y = (__int128_t(y) * y + c) % n; d = __gcd(x - y + n, n); } while (d == 1); if (d < n) { vector<ll> lb = Pollard(d), rb = Pollard(n / d); lb.insert(lb.end(), ALL(rb)); return lb; } } } vector<pair<ll, int>> Pollard2(ll n) { auto ps = Pollard(n); sort(ALL(ps)); using P = pair<ll, int>; vector<P> pes; for (auto &p : ps) { if (pes.empty() or pes.back().first != p) { pes.push_back({p, 1}); } else { pes.back().second++; } } return pes; } vector<ll> EnumDivisors(ll n) { auto pes = Pollard2(n); vector<ll> ret; auto rec = [&](auto &rec, int id, ll d) -> void { if (id == SZ(pes)) { ret.push_back(d); return; } rec(rec, id + 1, d); rep(e, 0, pes[id].second) { d *= pes[id].first; rec(rec, id + 1, d); } }; rec(rec, 0, 1); sort(ALL(ret)); return ret; } /** * @brief Pollard-Rho */ #line 8 "sol.cpp" int Pisano(int p) { if (p == 2) return 3; if (p == 5) return 20; vector<ll> cand; if (p % 5 == 1 or p % 5 == 4) cand = EnumDivisors(p - 1); else cand = EnumDivisors(p * 2 + 2); auto check = [&](int d, int p) -> bool { Fp::set_mod(p); Matrix<Fp> mat(2, 2); mat[0][1] = mat[1][0] = mat[1][1] = 1; mat = mat.pow(d); return mat[0][1] == 0 and mat[1][1] == 1; }; for (auto &d : cand) if (check(d, p)) { return d; } assert(0); } #line 2 "library/Math/modint.hpp" template <unsigned mod = 1000000007> struct fp { unsigned v; static constexpr int get_mod() { return mod; } constexpr unsigned inv() const { assert(v != 0); int x = v, y = mod, p = 1, q = 0, t = 0, tmp = 0; while (y > 0) { t = x / y; x -= t * y, p -= t * q; tmp = x, x = y, y = tmp; tmp = p, p = q, q = tmp; } if (p < 0) p += mod; return p; } constexpr fp(ll x = 0) : v(x >= 0 ? x % mod : (mod - (-x) % mod) % mod) {} fp operator-() const { return fp() - *this; } fp pow(ull t) { fp res = 1, b = *this; while (t) { if (t & 1) res *= b; b *= b; t >>= 1; } return res; } fp &operator+=(const fp &x) { if ((v += x.v) >= mod) v -= mod; return *this; } fp &operator-=(const fp &x) { if ((v += mod - x.v) >= mod) v -= mod; return *this; } fp &operator*=(const fp &x) { v = ull(v) * x.v % mod; return *this; } fp &operator/=(const fp &x) { v = ull(v) * x.inv() % mod; return *this; } fp operator+(const fp &x) const { return fp(*this) += x; } fp operator-(const fp &x) const { return fp(*this) -= x; } fp operator*(const fp &x) const { return fp(*this) *= x; } fp operator/(const fp &x) const { return fp(*this) /= x; } bool operator==(const fp &x) const { return v == x.v; } bool operator!=(const fp &x) const { return v != x.v; } friend istream &operator>>(istream &is, fp &x) { return is >> x.v; } friend ostream &operator<<(ostream &os, const fp &x) { return os << x.v; } }; template <unsigned mod> void rd(fp<mod> &x) { fastio::rd(x.v); } template <unsigned mod> void wt(fp<mod> x) { fastio::wt(x.v); } /** * @brief Modint */ #line 2 "library/Math/comb.hpp" template <typename T> T Inv(ll n) { static int md; static vector<T> buf({0, 1}); if (md != T::get_mod()) { md = T::get_mod(); buf = vector<T>({0, 1}); } assert(n > 0); n %= md; while (SZ(buf) <= n) { int k = SZ(buf), q = (md + k - 1) / k; buf.push_back(buf[k * q - md] * q); } return buf[n]; } template <typename T> T Fact(ll n, bool inv = 0) { static int md; static vector<T> buf({1, 1}), ibuf({1, 1}); if (md != T::get_mod()) { md = T::get_mod(); buf = ibuf = vector<T>({1, 1}); } assert(n >= 0 and n < md); while (SZ(buf) <= n) { buf.push_back(buf.back() * SZ(buf)); ibuf.push_back(ibuf.back() * Inv<T>(SZ(ibuf))); } return inv ? ibuf[n] : buf[n]; } template <typename T> T nPr(int n, int r, bool inv = 0) { if (n < 0 || n < r || r < 0) return 0; return Fact<T>(n, inv) * Fact<T>(n - r, inv ^ 1); } template <typename T> T nCr(int n, int r, bool inv = 0) { if (n < 0 || n < r || r < 0) return 0; return Fact<T>(n, inv) * Fact<T>(r, inv ^ 1) * Fact<T>(n - r, inv ^ 1); } // sum = n, r tuples template <typename T> T nHr(int n, int r, bool inv = 0) { return nCr<T>(n + r - 1, r - 1, inv); } // sum = n, a nonzero tuples and b tuples template <typename T> T choose(int n, int a, int b) { if (n == 0) return !a; return nCr<T>(n + b - 1, a + b - 1); } /** * @brief Combination */ #line 35 "sol.cpp" using X = fp<>; int main() { int n; read(n); vector<int> p(n), k(n); rep(i, 0, n) read(p[i], k[i]); map<int, int> L; rep(i, 0, n) { int base = Pisano(p[i]); show(p[i], base); auto pes = Pollard2(base); bool ch = 0; for (auto &[P, e] : pes) { if (P == p[i]) { e += k[i] - 1; ch = 1; } chmax(L[P], e); } if (!ch) chmax(L[p[i]], k[i] - 1); } X ret = 1; for (auto &[p, e] : L) ret *= X(p).pow(e); print(ret); return 0; }