結果

問題 No.3169 [Cherry 7th Tune] Desire for Approval
ユーザー 👑 Kazun
提出日時 2025-05-05 18:50:31
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 4,494 ms / 7,000 ms
コード長 21,907 bytes
コンパイル時間 358 ms
コンパイル使用メモリ 82,572 KB
実行使用メモリ 153,736 KB
最終ジャッジ日時 2025-05-30 21:09:17
合計ジャッジ時間 57,795 ms
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 46
権限があれば一括ダウンロードができます

ソースコード

diff #

"""
Mod はグローバル変数からの指定とする.
"""

"""
積
"""
def product_modulo(*X):
    y=1
    for x in X:
        y=(x*y)%Mod
    return y

"""
階乗
"""
def Factor(N):
    """ 0!, 1!, ..., N! (mod Mod) を出力する.

    N: int
    """
    f=[1]*(N+1)
    for k in range(1,N+1):
        f[k]=(k*f[k-1])%Mod
    return f

def Factor_with_inverse(N):
    """ 0!, 1!, ..., N!, (0!)^-1, (1!)^-1, ..., (N!)^-1 を出力する.

    N: int
    """

    f = Factor(N)
    g = [0]*(N+1)

    N = min(N, Mod-1)
    g[N] = pow(f[N], Mod - 2, Mod)

    for k in range(N-1,-1,-1):
        g[k] = ((k+1) * g[k+1]) % Mod

    return f, g

def Double_Factor(N):
    """ 0!!, 1!!, ..., N!! (mod Mod) を出力する.

    N: int
    """
    f=[1]*(N+1)
    for i in range(2,N+1):
        f[i]=i*f[i-2]%Mod
    return f

def Modular_Inverse(N):
    """ 1^(-1), 2^(-1), ..., N^(-1) (mod Mod) を出力する.

    [Input]
    N:int

    [Output]
    [-1, 1^(-1), 2^(-1), ..., N^(-1)] (第 0 要素に注意!!)
    """

    inv=[1]*(N+1); inv[0]=-1
    for k in range(2, N+1):
        q,r=divmod(Mod,k)
        inv[k]=(-q*inv[r])%Mod
    return inv

"""
組み合わせの数
Factor_with_inverse で fact, fact_inv を既に求めていることが前提 (グローバル変数)
"""

def nCr(n,r):
    """ nCr (1,2,...,n から相異なる r 個の整数を選ぶ方法) を求める.

    n,r: int
    """

    if 0<=r<=n:
        return fact[n]*(fact_inv[r]*fact_inv[n-r]%Mod)%Mod
    else:
        return 0

def nPr(n,r):
    """ nPr (1,2,...,n から相異なる r 個の整数を選び, 並べる方法) を求める.

    n,r: int
    """

    if 0<=r<=n:
        return (fact[n]*fact_inv[n-r])%Mod
    else:
        return 0

def nHr(n,r):
    """ nHr (1,2,...,n から重複を許して r 個の整数を選ぶ方法) を求める.

    n,r: int
    ※ fact, fact_inv は第 n+r-1 項まで必要
    """

    if n==r==0:
        return 1
    else:
        return nCr(n+r-1,r)

def Multinomial_Coefficient(*K):
    """ K=[k_0,...,k_{r-1}] に対して, k_0, ..., k_{r-1} に対する多項係数を求める.

    k_i: int
    """

    N=0
    g_inv=1
    for k in K:
        N+=k
        g_inv*=fact_inv[k]; g_inv%=Mod
    return (fact[N]*g_inv)%Mod

def Binomial_Coefficient_Modulo_List(n: int):
    """ n を固定し, r=0,1,...,n としたときの nCr (mod Mod) のリストを出力する.

    n: int

    [出力]
    [nC0 , nC1 ,..., nCn]
    """

    L=[1]*(n+1)
    inv=Modular_Inverse(n+1)
    for r in range(1, n+1):
        L[r]=((n+1-r)*inv[r]%Mod)*L[r-1]%Mod
    return L

def Pascal_Triangle(N: int, mode=False):
    """
    0<=n<=N, 0<=r<=n の全てに対して nCr (mod M) のリストを出力する.

    N: int

    [出力]
    [[0C0], [1C0, 1C1], ... , [nC0, ... , nCn], ..., [NC0, ..., NCN]]
    """

    if mode:
        L=[[0]*(N+1) for _ in range(N+1)]
        L[0][0]=1
        for n in range(1,N+1):
            Ln=L[n]; Lnn=L[n-1]
            Ln[0]=1
            for r in range(1,N+1):
                Ln[r]=(Lnn[r]+Lnn[r-1])%Mod
        return L

    else:
        X=[1]
        L=[[1]]
        for n in range(N):
            Y=[1]
            for k in range(1, n+1):
                Y.append((X[k]+X[k-1])%Mod)
            Y.append(1)
            X=Y
            L.append(Y)
    return L

def Lucas_Combination(n, r):
    """ Lucas の定理を用いて nCr (mod Mod) を求める.

    """

    X=1
    while n or r:
        ni=n%Mod; ri=r%Mod
        n//=Mod; r//=Mod

        if ni<ri:
            return 0

        beta=fact_inv[ri]*fact_inv[ni-ri]%Mod
        X*=(fact[ni]*beta)%Mod
        X%=Mod
    return X
"""
特別な数
"""

def Catalan_Number(N):
    """ Catalan 数 C(N) を求める.

    注意
    C(N)=(2N)!/((N+1)!N!) なので, (2N)! までの値が必要.
    """

    g_inv=fact_inv[N+1]*fact_inv[N]%Mod
    return fact[2*N]*g_inv%Mod

"""
等比数列
"""

def Geometric_Sequence(a, r, N):
    """ k=0,1,...,N に対する a*r^k を出力する.

    a,r,N: int
    """

    a%=Mod; r%=Mod
    X=[0]*(N+1); X[0]=a
    for k in range(1,N+1):
        X[k]=r*X[k-1]%Mod
    return X

def Geometric_Inverse_Sequence(a, r, N):
    """ k=0,1,...,N に対する a/r^k を出力する.

    a,r,N: int
    """

    a %= Mod; r_inv = pow(r, Mod - 2, Mod)
    X = [0] * (N+1); X[0]=a

    for k in range(1,N+1):
        X[k] = r_inv * X[k-1] % Mod
    return X

"""
積和
"""
def Sum_of_Product(*X):
    """ 長さが等しいリスト X_1, X_2, ..., X_k に対して, sum(X_1[i]*X_2[i]*...*X_k[i]) を求める.
    """

    S=0
    for alpha in zip(*X):
        S+=product_modulo(*alpha)
    return S%Mod

def Sum_of_Product_Yielder(N,*Y):
    S=0
    M=len(Y)
    for _ in range(N+1):
        x=1
        for j in range(M):
            x*=next(Y[j]); x%=Mod
        S+=x
    return S%Mod

class Calculator:
    def __init__(self):
        self.primitive = self.__primitive_root()
        self.__build_up()

    def __primitive_root(self) -> int:
        """ Mod の原始根を求める.

        Returns:
            int: Mod の原始根
        """

        p = Mod
        if p == 2:
            return 1
        if p == 998244353:
            return 3
        if p == 10**9 + 7:
            return 5
        if p == 163577857:
            return 23
        if p == 167772161:
            return 3
        if p == 469762049:
            return 3

        fac=[]
        q=2
        v=p-1

        while v>=q*q:
            e=0
            while v%q==0:
                e+=1
                v//=q

            if e>0:
                fac.append(q)
            q+=1

        if v>1:
            fac.append(v)

        for g in range(2, p):
            if pow(g, p-1, p) != 1:
                return None

            flag=True
            for q in fac:
                if pow(g, (p-1) // q, p) == 1:
                    flag = False
                    break

            if flag:
                return g

    #参考元: https://judge.yosupo.jp/submission/72676
    def __build_up(self):
        rank2=(~(Mod-1) & ((Mod-1)-1)).bit_length()
        root=[0]*(rank2+1); iroot=[0]*(rank2+1)
        rate2=[0]*max(0, rank2-1); irate2=[0]*max(0, rank2-1)
        rate3=[0]*max(0, rank2-2); irate3=[0]*max(0, rank2-2)

        root[-1]=pow(self.primitive, (Mod-1)>>rank2, Mod)
        iroot[-1]=pow(root[-1], -1, Mod)

        for i in range(rank2)[::-1]:
            root[i]=root[i+1]*root[i+1]%Mod
            iroot[i]=iroot[i+1]*iroot[i+1]%Mod

        prod=iprod=1
        for i in range(rank2-1):
            rate2[i]=root[i+2]*prod%Mod
            irate2[i]=iroot[i+2]*prod%Mod
            prod*=iroot[i+2]; prod%=Mod
            iprod*=root[i+2]; iprod%=Mod

        prod=iprod = 1
        for i in range(rank2-2):
            rate3[i]=root[i + 3]*prod%Mod
            irate3[i]=iroot[i + 3]*iprod%Mod
            prod*=iroot[i + 3]; prod%=Mod
            iprod*=root[i + 3]; iprod%=Mod

        self.root=root; self.iroot=iroot
        self.rate2=rate2; self.irate2=irate2
        self.rate3=rate3; self.irate3=irate3

    def add(self, A: list[int] | int, B: list[int] | int) -> list[int]:
        """ 必要ならば末尾に元を追加して, [A[i] + B[i]] を求める.

        """

        if type(A) == list:
            pass
        elif type(A) == int:
            A = [A]
        else:
            raise NotImplementedError

        if type(B) == list:
            pass
        elif type(B) == int:
            B = [B]
        else:
            raise NotImplementedError

        m = min(len(A), len(B))
        C = [(A[i] + B[i]) %Mod for i in range(m)]
        C.extend(A[m:])
        C.extend(B[m:])
        return C

    def sub(self, A: list[int] | int, B: list[int] | int) -> list[int]:
        """ 必要ならば末尾に元を追加して, [A[i] - B[i]] を求める.

        """

        if type(A) == list:
            pass
        elif type(A) == int:
            A = [A]
        else:
            raise NotImplementedError

        if type(B) == list:
            pass
        elif type(B) == int:
            B = [B]
        else:
            raise NotImplementedError

        m = min(len(A), len(B))
        C = [(A[i] - B[i]) % Mod for i in range(m)]
        C.extend(A[m:])
        C.extend([-b % Mod for b in B[m:]])
        return C

    def times(self, A: list[int], k: int) -> list[int]:
        """ [k * A[i]] を求める.

        """
        return [k * a % Mod for a in A]

    #参考元 https://judge.yosupo.jp/submission/72676
    def ntt(self, A: list[int]):
        """ A に Mod を法とする数論変換を施す

        ※ Mod はグローバル変数から指定

        References:
        https://github.com/atcoder/ac-library/blob/master/atcoder/convolution.hpp
        https://judge.yosupo.jp/submission/72676
        """

        N=len(A)
        H=(N-1).bit_length()
        l=0

        I=self.root[2]
        rate2=self.rate2; rate3=self.rate3

        while l<H:
            if H-l==1:
                p=1<<(H-l-1)
                rot=1
                for s in range(1<<l):
                    offset=s<<(H-l)
                    for i in range(p):
                        x=A[i+offset]; y=A[i+offset+p]*rot%Mod
                        A[i+offset]=(x+y)%Mod
                        A[i+offset+p]=(x-y)%Mod

                    if s+1!=1<<l:
                        rot*=rate2[(~s&-~s).bit_length()-1]
                        rot%=Mod
                l+=1
            else:
                p=1<<(H-l-2)
                rot=1
                for s in range(1<<l):
                    rot2=rot*rot%Mod
                    rot3=rot2*rot%Mod
                    offset=s<<(H-l)
                    for i in range(p):
                        a0=A[i+offset]
                        a1=A[i+offset+p]*rot
                        a2=A[i+offset+2*p]*rot2
                        a3=A[i+offset+3*p]*rot3

                        alpha=(a1-a3)%Mod*I

                        A[i+offset]=(a0+a2+a1+a3)%Mod
                        A[i+offset+p]=(a0+a2-a1-a3)%Mod
                        A[i+offset+2*p]=(a0-a2+alpha)%Mod
                        A[i+offset+3*p]=(a0-a2-alpha)%Mod

                    if s+1!=1<<l:
                        rot*=rate3[(~s&-~s).bit_length()-1]
                        rot%=Mod
                l+=2

    #参考元 https://judge.yosupo.jp/submission/72676
    def inverse_ntt(self, A):
        """ A を Mod を法とする逆数論変換を施す

        ※ Mod はグローバル変数から指定

        References:
        https://github.com/atcoder/ac-library/blob/master/atcoder/convolution.hpp
        https://judge.yosupo.jp/submission/72676
        """
        N=len(A)
        H=(N-1).bit_length()
        l=H

        J=self.iroot[2]
        irate2=self.rate2; irate3=self.irate3

        while l:
            if l==1:
                p=1<<(H-l)
                irot=1
                for s in range(1<<(l-1)):
                    offset=s<<(H-l+1)
                    for i in range(p):
                        x=A[i+offset]; y=A[i+offset+p]
                        A[i+offset]=(x+y)%Mod
                        A[i+offset+p]=(x-y)*irot%Mod

                    if s+1!=1<<(l-1):
                        irot*=irate2[(~s&-~s).bit_length()-1]
                        irot%=Mod
                l-=1
            else:
                p=1<<(H-l)
                irot=1
                for s in range(1<<(l-2)):
                    irot2=irot*irot%Mod
                    irot3=irot2*irot%Mod
                    offset=s<<(H-l+2)
                    for i in range(p):
                        a0=A[i+offset]
                        a1=A[i+offset+p]
                        a2=A[i+offset+2*p]
                        a3=A[i+offset+3*p]

                        beta=(a2-a3)*J%Mod

                        A[i+offset]=(a0+a1+a2+a3)%Mod
                        A[i+offset+p]=(a0-a1+beta)*irot%Mod
                        A[i+offset+2*p]=(a0+a1-a2-a3)*irot2%Mod
                        A[i+offset+3*p]=(a0-a1-beta)*irot3%Mod

                    if s+1!=1<<(l-2):
                        irot*=irate3[(~s&-~s).bit_length()-1]
                        irot%=Mod
                l-=2
        N_inv=pow(N, -1, Mod)
        for i in range(N):
            A[i]=N_inv*A[i]%Mod

    def non_zero_count(self, A: list[int]) -> int:
        """ A にある非零要素の個数を求める.

        Args:
            A (list[int]):

        Returns:
            int: 非零要素の個数
        """
        return len(A) - A.count(0)

    def is_sparse(self, A: list[int], threshold: int = 25) -> bool:
        """A が疎かどうかを判定する.

        Args:
            A (list[int]):
            threshold (int, optional): 非零要素の個数が threshold 以下ならば疎と判定する. Defaults to 25.

        Returns:
            bool: 疎?
        """

        return self.non_zero_count(A) <= threshold

    def coefficients_list(self, A: list[int]) -> tuple[list[int], list[int]]:
        """ A にある非零要素のリストを求める.

        Args:
            A (list[int]):

        Returns:
            tuple[list[int], list[int]]: ([d[0], ..., d[k-1]], [f[0], ..., f[k-1]]) の形のリスト.
                j = 0, 1, ..., k - 1 に対して, a[d[j]] = f[j] であることを意味する.
        """

        f = []; d = []
        for i in range(len(A)):
            if A[i] == 0:
                continue

            d.append(i)
            f.append(A[i])
        return d, f

    def convoluton_greedy(self, A: list[int], B: list[int]) -> list[int]:
        """ 畳み込み積 A * B を愚直な方法で求める.

        Args:
            A (list[int]):
            B (list[int]):

        Returns:
            list[int]: 畳み込み積 A * B
        """

        if len(A) < len(B):
            A, B = B, A

        n = len(A)
        m = len(B)
        C = [0] * (n + m - 1)
        for i in range(n):
            for j in range(m):
                C[i + j] += A[i] * B[j] % Mod

        for k in range(n + m - 1):
            C[k] %= Mod

        return C

    def convolution(self, A: list[int], B: list[int]) -> list[int]:
        """ 畳み込み積 A * B を求める.

        Args:
            A (list[int]):
            B (list[int]):

        Returns:
            list[int]: 畳み込み積 A * B
        """

        if (not A) or (not B):
            return []

        N=len(A)
        M=len(B)
        L=M+N-1

        if min(N,M)<=50:
            return self.convoluton_greedy(A, B)

        H=L.bit_length()
        K=1<<H

        A=A+[0]*(K-N)
        B=B+[0]*(K-M)

        self.ntt(A)
        self.ntt(B)

        for i in range(K):
            A[i]=A[i]*B[i]%Mod

        self.inverse_ntt(A)

        return A[:L]

    def autocorrelation(self, A: list[int]) -> list[int]:
        """ 自分自身との畳み込み積を求める.

        Args:
            A (list[int]):

        Returns:
            list[int]: 畳み込み積 A * A
        """

        N=len(A)
        L=2*N-1

        if N<=50:
            C=[0]*L
            for i in range(N):
                for j in range(N):
                    C[i+j]+=A[i]*A[j]
                    C[i+j]%=Mod
            return C

        H=L.bit_length()
        K=1<<H

        A=A+[0]*(K-N)

        self.ntt(A)

        for i in range(K):
            A[i]=A[i]*A[i]%Mod
        self.inverse_ntt(A)

        return A[:L]

    def multiple_convolution(self, *A: list[int]) -> list[int]:
        """ A = (A[0], A[1], ..., A[k - 1]) に対して, この k 個の畳み込み積 A[0] * A[1] * ... * A[k - 1] を求める.

        Args:
            A (list[list[int]]): 畳み込む k 個の整数のリスト

        Returns:
            list[int]: k 個の畳み込み積 A[0] * A[1] * ... * A[k - 1]
        """

        from collections import deque

        if not A:
            return [1]

        Q=deque(list(range(len(A))))
        A=list(A)

        while len(Q)>=2:
            i=Q.popleft(); j=Q.popleft()
            A[i]=self.convolution(A[i], A[j])
            A[j]=None
            Q.append(i)

        i=Q.popleft()
        return A[i]

    def inverse(self, F: list[int], length: int = None) -> list[int]:
        """ F * G = [1, 0, 0, ..., 0] (0 が (length - 1) 個) を満たす長さ length のリスト G を求める.

        Args:
            F (list[int]):
            length (int, optional): 求める G の長さ. None のときは length = len(F) とする. Defaults to None.

        Returns:
            list[int]: _description_
        """

        M = len(F) if length is None else length

        if M <= 0:
            return []

        if self.is_sparse(F):
            # 愚直に漸化式を用いて求める.
            # 計算量: F にある係数が非零の項の個数を K, 求める最大次数を N として, O(NK) 時間

            d,f=self.coefficients_list(F)

            G=[0]*M
            alpha=pow(F[0], -1, Mod)
            G[0]=alpha

            for i in range(1, M):
                for j in range(1, len(d)):
                    if d[j]<=i:
                        G[i]+=f[j]*G[i-d[j]]%Mod
                    else:
                        break

                G[i]%=Mod
                G[i]=(-alpha*G[i])%Mod
            del G[M:]
        else:
            # FFTの理論を応用して求める.
            # 計算量: 求めたい項の個数をNとして, O(N log N)
            # Reference: https://judge.yosupo.jp/submission/42413

            N=len(F)
            r=pow(F[0], -1, Mod)

            m=1
            G=[r]
            while m<M:
                A=F[:min(N, 2*m)]; A+=[0]*(2*m-len(A))
                B=G.copy(); B+=[0]*(2*m-len(B))

                Calc.ntt(A); Calc.ntt(B)
                for i in range(2*m):
                    A[i]=A[i]*B[i]%Mod

                Calc.inverse_ntt(A)
                A=A[m:]+[0]*m
                Calc.ntt(A)
                for i in range(2*m):
                    A[i]=-A[i]*B[i]%Mod
                Calc.inverse_ntt(A)

                G.extend(A[:m])
                m<<=1
            G=G[:M]
        return G

    def flood_div(self, F: list[int], G: list[int]) -> list[int]:
        assert F[-1]
        assert G[-1]

        F_deg=len(F)-1
        G_deg=len(G)-1

        if F_deg<G_deg:
            return []

        m=F_deg-G_deg+1
        return self.convolution(F[::-1], Calc.inverse(G[::-1],m))[m-1::-1]

    def mod(self, F: list[int], G: list[int]) -> list[int]:
        while F and F[-1] == 0:
            F.pop()

        while G and G[-1] == 0:
            G.pop()

        if not F:
            return []

        return Calc.sub(F, Calc.convolution(Calc.flood_div(F, G), G))

#==================================================
class Exponent_Polynomial:
    def __init__(self, exponent: int, polynomial: list[int]):
        self.exponent = exponent % Mod
        self.polynomial = polynomial

    def __repr__(self) -> str:
        return f"{self.__class__.__name__}({self.exponent}, {self.polynomial})"

    def __add__(self, other: "Exponent_Polynomial"):
        assert self.exponent == other.exponent

        return Exponent_Polynomial(self.exponent, Calc.add(self.exponent, other.exponent))

    def __mul__(self, other: "Exponent_Polynomial") -> "Exponent_Polynomial":
        return Exponent_Polynomial((self.exponent + other.exponent) % Mod, Calc.convolution(self.polynomial, other.polynomial))

    def differential(self) -> "Exponent_Polynomial":
        diff_poly = [0] * len(self.polynomial)

        for d in range(len(self.polynomial)):
            diff_poly[d - 1] += d * self.polynomial[d] % Mod
            diff_poly[d] += self.exponent * self.polynomial[d] % Mod

        return Exponent_Polynomial(self.exponent, [a % Mod for a in diff_poly])

    def integrate_zero_to_infinity(self) -> int:
        if self.exponent == 0 and all(a == 0 for a in self.polynomial):
            return 0

        res = 0
        t = pow(-self.exponent, -1, Mod)
        alpha = 1
        for d in range(len(self.polynomial)):
            alpha *= t; alpha %= Mod
            coef = fact[d] * alpha % Mod
            res += coef * self.polynomial[d] % Mod
        return res % Mod

    def push(self) -> "Exponent_Polynomial":
        return Exponent_Polynomial(self.exponent, [0] + self.polynomial)

#==================================================
def solve():
    from itertools import product as product_iter

    N = int(input())
    k = [0] * N; a = [0] * N
    for i in range(N):
        k[i], a[i] = map(int, input().split())

    global fact, fact_inv
    fact, fact_inv = Factor_with_inverse(sum(k) + N)

    exp_polys: list[Exponent_Polynomial] = [None] * N
    for i in range(N):
        b = pow(a[i], -1, Mod)
        poly = [fact_inv[t] * pow(a[i], -t, Mod) % Mod for t in range(k[i])]
        exp_polys[i] = Exponent_Polynomial(-b, poly)

    product: list[Exponent_Polynomial] = [None] * (1 << N)
    product[0] = Exponent_Polynomial(0, [1])
    expectation = [0] * (1 << N)

    for S in range(1, 1 << N):
        x = S & (-S)
        i = x.bit_length() - 1

        product[S] = product[S ^ x] * exp_polys[i]
        expectation[S] = product[S].differential().push().integrate_zero_to_infinity() % Mod

    E_pre = [0] * (N + 1)
    for W in product_iter(range(3), repeat = N):
        S = T = U = 0
        for i in range(N):
            if W[i] == 0:
                S |= 1 << i
            elif W[i] == 1:
                T |= 1 << i
            elif W[i] == 2:
                U |= 1 << i

        deg = (S | T).bit_count()
        E_pre[deg] += pow(-1, T.bit_count(), Mod) * expectation[T | U] % Mod

    return [sum(E_pre[m:]) % Mod for m in range(1, N + 1)]

#==================================================
Mod = 998244353
Calc = Calculator()
print(*solve())
0