結果
問題 |
No.3139 Interval MEX ?
|
ユーザー |
|
提出日時 | 2025-05-06 03:36:38 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 102 ms / 2,000 ms |
コード長 | 16,399 bytes |
コンパイル時間 | 4,963 ms |
コンパイル使用メモリ | 266,036 KB |
実行使用メモリ | 13,008 KB |
最終ジャッジ日時 | 2025-05-06 03:36:53 |
合計ジャッジ時間 | 15,075 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 57 |
ソースコード
#ifndef HIDDEN_IN_VS // 折りたたみ用 // 警告の抑制 #define _CRT_SECURE_NO_WARNINGS // ライブラリの読み込み #include <bits/stdc++.h> using namespace std; // 型名の短縮 using ll = long long; using ull = unsigned long long; // -2^63 ~ 2^63 = 9e18(int は -2^31 ~ 2^31 = 2e9) using pii = pair<int, int>; using pll = pair<ll, ll>; using pil = pair<int, ll>; using pli = pair<ll, int>; using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using vvvvi = vector<vvvi>; using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>; using vvvvl = vector<vvvl>; using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>; using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>; using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>; template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>; using Graph = vvi; // 定数の定義 const double PI = acos(-1); int DX[4] = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左) int DY[4] = { 0, 1, 0, -1 }; int INF = 1001001001; ll INFL = 4004004003094073385LL; // (int)INFL = INF, (int)(-INFL) = -INF; // 入出力高速化 struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp; // 汎用マクロの定義 #define all(a) (a).begin(), (a).end() #define sz(x) ((int)(x).size()) #define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), (x))) #define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), (x))) #define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");} #define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順 #define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順 #define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順 #define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能) #define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能) #define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d ビット全探索(昇順) #define repis(i, set) for(int i = lsb(set), bset##i = set; i < 32; bset##i -= 1 << i, i = lsb(bset##i)) // set の全要素(昇順) #define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順) #define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去 #define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了 #define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 半開矩形内判定 // 汎用関数の定義 template <class T> inline ll powi(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; } template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す) template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す) template <class T> inline T getb(T set, int i) { return (set >> i) & T(1); } template <class T> inline T smod(T n, T m) { n %= m; if (n < 0) n += m; return n; } // 非負mod // 演算子オーバーロード template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; } template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; } template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; } template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; } #endif // 折りたたみ用 #if __has_include(<atcoder/all>) #include <atcoder/all> using namespace atcoder; #ifdef _MSC_VER #include "localACL.hpp" #endif using mint = modint998244353; //using mint = static_modint<(int)1e9 + 7>; //using mint = modint; // mint::set_mod(m); namespace atcoder { inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; } inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; } } using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>; using pim = pair<int, mint>; #endif #ifdef _MSC_VER // 手元環境(Visual Studio) #include "local.hpp" #else // 提出用(gcc) inline int popcount(int n) { return __builtin_popcount(n); } inline int popcount(ll n) { return __builtin_popcountll(n); } inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : 32; } inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : 64; } inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; } inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; } #define dump(...) #define dumpel(v) #define dump_math(v) #define input_from_file(f) #define output_to_file(f) #define Assert(b) { if (!(b)) { vc MLE(1<<30); EXIT(MLE.back()); } } // RE の代わりに MLE を出す #endif //【階乗など(法が大きな素数)】 /* * Factorial_mint(int N) : O(n) * N まで計算可能として初期化する. * * mint fact(int n) : O(1) * n! を返す. * * mint fact_inv(int n) : O(1) * 1/n! を返す(n が負なら 0 を返す) * * mint inv(int n) : O(1) * 1/n を返す. * * mint perm(int n, int r) : O(1) * 順列の数 nPr を返す. * * mint perm_inv(int n, int r) : O(1) * 順列の数の逆数 1/nPr を返す. * * mint bin(int n, int r) : O(1) * 二項係数 nCr を返す. * * mint bin_inv(int n, int r) : O(1) * 二項係数の逆数 1/nCr を返す. * * mint mul(vi rs) : O(|rs|) * 多項係数 nC[rs] を返す.(n = Σrs) * * mint hom(int n, int r) : O(1) * 重複組合せの数 nHr = n+r-1Cr を返す(0H0 = 1 とする) * * mint neg_bin(int n, int r) : O(1) * 負の二項係数 nCr = (-1)^r -n+r-1Cr を返す(n ≦ 0, r ≧ 0) * * mint pochhammer(int x, int n) : O(1) * ポッホハマー記号 x^(n) を返す(n ≧ 0) * * mint pochhammer_inv(int x, int n) : O(1) * ポッホハマー記号の逆数 1/x^(n) を返す(n ≧ 0) */ class Factorial_mint { int n_max; // 階乗と階乗の逆数の値を保持するテーブル vm fac, fac_inv; public: // n! までの階乗とその逆数を前計算しておく.O(n) Factorial_mint(int n) : n_max(n), fac(n + 1), fac_inv(n + 1) { // verify : https://atcoder.jp/contests/dwacon6th-prelims/tasks/dwacon6th_prelims_b fac[0] = 1; repi(i, 1, n) fac[i] = fac[i - 1] * i; fac_inv[n] = fac[n].inv(); repir(i, n - 1, 0) fac_inv[i] = fac_inv[i + 1] * (i + 1); } Factorial_mint() : n_max(0) {} // ダミー // n! を返す. mint fact(int n) const { // verify : https://atcoder.jp/contests/dwacon6th-prelims/tasks/dwacon6th_prelims_b Assert(0 <= n && n <= n_max); return fac[n]; } // 1/n! を返す(n が負なら 0 を返す) mint fact_inv(int n) const { // verify : https://atcoder.jp/contests/abc289/tasks/abc289_h Assert(n <= n_max); if (n < 0) return 0; return fac_inv[n]; } // 1/n を返す. mint inv(int n) const { // verify : https://atcoder.jp/contests/exawizards2019/tasks/exawizards2019_d Assert(n > 0); Assert(n <= n_max); return fac[n - 1] * fac_inv[n]; } // 順列の数 nPr を返す. mint perm(int n, int r) const { // verify : https://atcoder.jp/contests/abc172/tasks/abc172_e Assert(n <= n_max); if (r < 0 || n - r < 0) return 0; return fac[n] * fac_inv[n - r]; } // 順列の数 nPr の逆数を返す. mint perm_inv(int n, int r) const { Assert(n <= n_max); Assert(0 <= r); Assert(r <= n); return fac_inv[n] * fac[n - r]; } // 二項係数 nCr を返す. mint bin(int n, int r) const { // verify : https://judge.yosupo.jp/problem/binomial_coefficient_prime_mod Assert(n <= n_max); if (r < 0 || n - r < 0) return 0; return fac[n] * fac_inv[r] * fac_inv[n - r]; } // 二項係数の逆数 1/nCr を返す. mint bin_inv(int n, int r) const { // verify : https://www.codechef.com/problems/RANDCOLORING Assert(n <= n_max); Assert(r >= 0); Assert(n - r >= 0); return fac_inv[n] * fac[r] * fac[n - r]; } // 多項係数 nC[rs] を返す. mint mul(const vi& rs) const { // verify : https://yukicoder.me/problems/no/2141 if (*min_element(all(rs)) < 0) return 0; int n = accumulate(all(rs), 0); Assert(n <= n_max); mint res = fac[n]; repe(r, rs) res *= fac_inv[r]; return res; } // 重複組合せの数 nHr = n+r-1Cr を返す(0H0 = 1 とする) mint hom(int n, int r) { // verify : https://mojacoder.app/users/riantkb/problems/toj_ex_2 if (n == 0) return (int)(r == 0); Assert(n + r - 1 <= n_max); if (r < 0 || n - 1 < 0) return 0; return fac[n + r - 1] * fac_inv[r] * fac_inv[n - 1]; } // 負の二項係数 nCr を返す(n ≦ 0, r ≧ 0) mint neg_bin(int n, int r) { // verify : https://atcoder.jp/contests/abc345/tasks/abc345_g if (n == 0) return (int)(r == 0); Assert(-n + r - 1 <= n_max); if (r < 0 || -n - 1 < 0) return 0; return (r & 1 ? -1 : 1) * fac[-n + r - 1] * fac_inv[r] * fac_inv[-n - 1]; } // ポッホハマー記号 x^(n) を返す(n ≧ 0) mint pochhammer(int x, int n) { // verify : https://atcoder.jp/contests/agc070/tasks/agc070_c int x2 = x + n - 1; if (x <= 0 && 0 <= x2) return 0; if (x > 0) { Assert(x2 <= n_max); return fac[x2] * fac_inv[x - 1]; } else { Assert(-x <= n_max); return (n & 1 ? -1 : 1) * fac[-x] * fac_inv[-x2 - 1]; } } // ポッホハマー記号の逆数 1/x^(n) を返す(n ≧ 0) mint pochhammer_inv(int x, int n) { // verify : https://atcoder.jp/contests/agc070/tasks/agc070_c int x2 = x + n - 1; Assert(!(x <= 0 && 0 <= x2)); if (x > 0) { Assert(x2 <= n_max); return fac_inv[x2] * fac[x - 1]; } else { Assert(-x <= n_max); return (n & 1 ? -1 : 1) * fac_inv[-x] * fac[-x2 - 1]; } } }; // O(N^3) vm TLE(int n, int m) { Factorial_mint fm(n + 10); vm c(n + 1); repi(x, 0, n) { //dump("-------------- x:", x, "-----------------"); vvm dp(n + 1, vm(x + 1)); dp[0][0] = 1; rep(i, n) repi(j, 0, min(i, x)) { int k = min(i + m, x) - j; dp[i + 1][j] += dp[i][j] * (i + m - k); if (j + 1 <= x) { dp[i + 1][j + 1] += dp[i][j] * k; } } //dumpel(dp); c[x] = dp[n][x]; } //dump(c); // rep(i, n) c[i] -= c[i + 1]; return c; } void zikken() { int N = 10; vvvm tbl(N, vvm(N)); repi(n, 1, N) repi(m, 1, N) { tbl[n - 1][m - 1] = TLE(n, m); } dump_math(tbl); // 3D P-recursive. exit(0); } /* {{{1,1},{2,1},{3,1},{4,1},{5,1},{6,1},{7,1},{8,1},{9,1},{10,1}},{{2,2,1},{6,4,2},{12,6,2},{20,8,2},{30,10,2},{42,12,2},{56,14,2},{72,16,2},{90,18,2},{110,20,2}},{{6,6,4,1},{24,18,12,4},{60,36,18,6},{120,60,24,6},{210,90,30,6},{336,126,36,6},{504,168,42,6},{720,216,48,6},{990,270,54,6},{1320,330,60,6}},{{24,24,18,8,1},{120,96,72,36,8},{360,240,144,72,18},{840,480,240,96,24},{1680,840,360,120,24},{3024,1344,504,144,24},{5040,2016,672,168,24},{7920,2880,864,192,24},{11880,3960,1080,216,24},{17160,5280,1320,240,24}},{{120,120,96,54,16,1},{720,600,480,288,108,16},{2520,1800,1200,720,288,54},{6720,4200,2400,1200,480,96},{15120,8400,4200,1800,600,120},{30240,15120,6720,2520,720,120},{55440,25200,10080,3360,840,120},{95040,39600,14400,4320,960,120},{154440,59400,19800,5400,1080,120},{240240,85800,26400,6600,1200,120}},{{720,720,600,384,162,32,1},{5040,4320,3600,2400,1152,324,32},{20160,15120,10800,7200,3600,1152,162},{60480,40320,25200,14400,7200,2400,384},{151200,90720,50400,25200,10800,3600,600},{332640,181440,90720,40320,15120,4320,720},{665280,332640,151200,60480,20160,5040,720},{1235520,570240,237600,86400,25920,5760,720},{2162160,926640,356400,118800,32400,6480,720},{3603600,1441440,514800,158400,39600,7200,720}},{{5040,5040,4320,3000,1536,486,64,1},{40320,35280,30240,21600,12000,4608,972,64},{181440,141120,105840,75600,43200,18000,4608,486},{604800,423360,282240,176400,100800,43200,12000,1536},{1663200,1058400,635040,352800,176400,75600,21600,3000},{3991680,2328480,1270080,635040,282240,105840,30240,4320},{8648640,4656960,2328480,1058400,423360,141120,35280,5040},{17297280,8648640,3991680,1663200,604800,181440,40320,5040},{32432400,15135120,6486480,2494800,831600,226800,45360,5040},{57657600,25225200,10090080,3603600,1108800,277200,50400,5040}},{{40320,40320,35280,25920,15000,6144,1458,128,1},{362880,322560,282240,211680,129600,60000,18432,2916,128},{1814400,1451520,1128960,846720,529200,259200,90000,18432,1458},{6652800,4838400,3386880,2257920,1411200,705600,259200,60000,6144},{19958400,13305600,8467200,5080320,2822400,1411200,529200,129600,15000},{51891840,31933440,18627840,10160640,5080320,2257920,846720,211680,25920},{121080960,69189120,37255680,18627840,8467200,3386880,1128960,282240,35280},{259459200,138378240,69189120,31933440,13305600,4838400,1451520,322560,40320},{518918400,259459200,121080960,51891840,19958400,6652800,1814400,362880,40320},{980179200,461260800,201801600,80720640,28828800,8870400,2217600,403200,40320}},{{362880,362880,322560,246960,155520,75000,24576,4374,256,1},{3628800,3265920,2903040,2257920,1481760,777600,300000,73728,8748,256},{19958400,16329600,13063680,10160640,6773760,3704400,1555200,450000,73728,4374},{79833600,59875200,43545600,30481920,20321280,11289600,4939200,1555200,300000,24576},{259459200,179625600,119750400,76204800,45722880,25401600,11289600,3704400,777600,75000},{726485760,467026560,287400960,167650560,91445760,45722880,20321280,6773760,1481760,155520},{817970047,91484287,622702080,335301120,167650560,76204800,30481920,10160640,2257920,246960},{158369788,338644094,247159807,622702080,287400960,119750400,43545600,13063680,2903040,322560},{835657976,677288188,338644094,91484287,467026560,179625600,59875200,16329600,3265920,362880},{673071599,835657976,158369788,817970047,726485760,259459200,79833600,19958400,3628800,362880}},{{3628800,3628800,3265920,2580480,1728720,933120,375000,98304,13122,512,1},{39916800,36288000,32659200,26127360,18063360,10372320,4665600,1500000,294912,26244,512},{239500800,199584000,163296000,130636800,91445760,54190080,25930800,9331200,2250000,294912,13122},{39592447,798336000,598752000,435456000,304819200,182891520,90316800,34574400,9331200,1500000,98304},{637695741,598103294,798011647,199259647,762048000,457228800,228614400,90316800,25930800,4665600,375000},{914842870,277147129,677288188,877520894,678261247,914457600,457228800,182891520,54190080,10372320,933120},{110344163,193745646,914842870,237554682,358278141,678261247,762048000,304819200,91445760,18063360,1728720},{695797690,585453527,391707881,475109364,237554682,877520894,199259647,435456000,130636800,26127360,2580480},{68178273,370624936,783415762,391707881,914842870,677288188,798011647,598752000,163296000,32659200,3265920},{809428145,741249872,370624936,585453527,193745646,277147129,598103294,798336000,199584000,36288000,3628800}}}; */ // O(N M) vm TLE2(int n, int m) { Factorial_mint fm(n + m + 10); vvm dp(n + 2, vm(m + 1)); repi(j, 1, m) dp[1][j] = fm.fact(n + j - 1) * fm.fact_inv(j - 1); repi(i, 1, n + 1) dp[i][1] = mint(2 + n - i).pow(i - 1) * fm.fact(n - i + 1); repi(i, 2, n + 1) repi(j, 2, m) { // よく見ると斜め方向なら 1D P-recursive. dp[i][j] = (2 + n - i) * dp[i - 1][j - 1] * fm.inv(j - 1); } dumpel(dp); vm c(n + 1); repi(i, 0, n) c[i] = dp[i + 1][m]; rep(i, n) c[i] -= c[i + 1]; return c; } // O(N + M) くらい vm solve(int n, int m) { Factorial_mint fm(n + m + 10); vm c(n + 1); repi(I, 1, n + 1) { int L = min(I - 1, m - 1); if (L == I - 1) { int j = m - L; c[I - 1] = fm.fact(n + j - 1) * fm.fact_inv(j - 1); } else { int i = I - L; c[I - 1] = mint(2 + n - i).pow(i - 1) * fm.fact(n - i + 1); } dump(c[I - 1]); // これでいい. int J = m; c[I - 1] *= fm.pochhammer(2 + n - I, L) * fm.perm_inv(J - 1, L); } dump(c); rep(i, n) c[i] -= c[i + 1]; return c; } int main() { // input_from_file("input.txt"); // output_to_file("output.txt"); // zikken(); int n, m; cin >> n >> m; dump(TLE(n, m)); dump("======"); dump(TLE2(n, m)); dump("======"); auto res = solve(n, m); repi(i, 0, n) cout << res[i] << "\n"; }