結果
問題 |
No.674 n連勤
|
ユーザー |
![]() |
提出日時 | 2025-05-09 03:45:14 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 414 ms / 2,000 ms |
コード長 | 6,976 bytes |
コンパイル時間 | 455 ms |
コンパイル使用メモリ | 82,656 KB |
実行使用メモリ | 83,008 KB |
最終ジャッジ日時 | 2025-05-09 03:45:20 |
合計ジャッジ時間 | 5,050 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 17 |
ソースコード
# https://github.com/tatyam-prime/SortedSet/blob/main/SortedSet.py import math from bisect import bisect_left, bisect_right from typing import Generic, Iterable, Iterator, TypeVar T = TypeVar('T') class SortedSet(Generic[T]): BUCKET_RATIO = 16 SPLIT_RATIO = 24 def __init__(self, a: Iterable[T] = []) -> None: "Make a new SortedSet from iterable. / O(N) if sorted and unique / O(N log N)" a = list(a) n = len(a) if any(a[i] > a[i + 1] for i in range(n - 1)): a.sort() if any(a[i] >= a[i + 1] for i in range(n - 1)): a, b = [], a for x in b: if not a or a[-1] != x: a.append(x) n = self.size = len(a) num_bucket = int(math.ceil(math.sqrt(n / self.BUCKET_RATIO))) self.a = [a[n * i // num_bucket: n * (i + 1) // num_bucket] for i in range(num_bucket)] def __iter__(self) -> Iterator[T]: for i in self.a: for j in i: yield j def __reversed__(self) -> Iterator[T]: for i in reversed(self.a): for j in reversed(i): yield j def __eq__(self, other) -> bool: return list(self) == list(other) def __len__(self) -> int: return self.size def __repr__(self) -> str: return "SortedSet" + str(self.a) def __str__(self) -> str: s = str(list(self)) return "{" + s[1: len(s) - 1] + "}" def _position(self, x: T) -> tuple[list[T], int, int]: "return the bucket, index of the bucket and position in which x should be. self must not be empty." for i, a in enumerate(self.a): if x <= a[-1]: break return (a, i, bisect_left(a, x)) def __contains__(self, x: T) -> bool: if self.size == 0: return False a, _, i = self._position(x) return i != len(a) and a[i] == x def add(self, x: T) -> bool: "Add an element and return True if added. / O(√N)" if self.size == 0: self.a = [[x]] self.size = 1 return True a, b, i = self._position(x) if i != len(a) and a[i] == x: return False a.insert(i, x) self.size += 1 if len(a) > len(self.a) * self.SPLIT_RATIO: mid = len(a) >> 1 self.a[b:b + 1] = [a[:mid], a[mid:]] return True def _pop(self, a: list[T], b: int, i: int) -> T: ans = a.pop(i) self.size -= 1 if not a: del self.a[b] return ans def discard(self, x: T) -> bool: "Remove an element and return True if removed. / O(√N)" if self.size == 0: return False a, b, i = self._position(x) if i == len(a) or a[i] != x: return False self._pop(a, b, i) return True def lt(self, x: T) -> T | None: "Find the largest element < x, or None if it doesn't exist." for a in reversed(self.a): if a[0] < x: return a[bisect_left(a, x) - 1] def le(self, x: T) -> T | None: "Find the largest element <= x, or None if it doesn't exist." for a in reversed(self.a): if a[0] <= x: return a[bisect_right(a, x) - 1] def gt(self, x: T) -> T | None: "Find the smallest element > x, or None if it doesn't exist." for a in self.a: if a[-1] > x: return a[bisect_right(a, x)] def ge(self, x: T) -> T | None: "Find the smallest element >= x, or None if it doesn't exist." for a in self.a: if a[-1] >= x: return a[bisect_left(a, x)] def __getitem__(self, i: int) -> T: "Return the i-th element." if i < 0: for a in reversed(self.a): i += len(a) if i >= 0: return a[i] else: for a in self.a: if i < len(a): return a[i] i -= len(a) raise IndexError def pop(self, i: int = -1) -> T: "Pop and return the i-th element." if i < 0: for b, a in enumerate(reversed(self.a)): i += len(a) if i >= 0: return self._pop(a, ~b, i) else: for b, a in enumerate(self.a): if i < len(a): return self._pop(a, b, i) i -= len(a) raise IndexError def index(self, x: T) -> int: "Count the number of elements < x." ans = 0 for a in self.a: if a[-1] >= x: return ans + bisect_left(a, x) ans += len(a) return ans def index_right(self, x: T) -> int: "Count the number of elements <= x." ans = 0 for a in self.a: if a[-1] > x: return ans + bisect_right(a, x) ans += len(a) return ans class IntervalSet: INF = 1 << 60 def __init__(self): self.ss = SortedSet() self.ss.add((IntervalSet.INF * 2, IntervalSet.INF)) # (r, l) def __len__(self): return len(self.ss) - 1 def __iter__(self): for r, l in self.ss: if l == IntervalSet.INF: break yield l, r def _overlap(self, l1: int, r1: int, l2: int, r2: int) -> int: """二つの半開区間 [l1, r1), [l2, r2) の重なりを求める""" assert l1 < r1 and l2 < r2 start = max(l1, l2) end = min(r1, r2) return max(0, end - start) def overlap_length(self, l: int, r: int) -> int: """半開区間 [l, r) との重なり幅を返す""" assert 0 <= l < r < IntervalSet.INF t = self.ss.ge((l+1, -1)) assert t is not None sr, sl = t # [sl, sr) if r < sl: return 0 if sl <= l and r <= sr: return r - l if r <= sr: return r - max(l, sl) wid = self._overlap(l, r, sl, sr) return wid + self.overlap_length(sr, r) def merge(self, l: int, r: int) -> tuple[int, int, int]: """ 半開区間 [l, r) をマージする。 マージ後の半開区間と、入力 [l, r) との重なり幅を返す return: 既存の区間との重なり総幅, マージ後の半開区間(l, r) """ assert 0 <= l < r t = self.ss.ge((l, -1)) assert t is not None sr, sl = t # [sl, sr) if r < sl: self.ss.add((r, l)) return 0, l, r if sl <= l and r <= sr: return r-l, sl, sr self.ss.discard(t) start = min(l, sl) if r <= sr: self.ss.add((sr, start)) return r-sl, start, sr wid, tl, tr = self.merge(start, r) wid += self._overlap(l, r, sl, sr) return wid, tl, tr D, Q = map(int, input().split()) ins = IntervalSet() ans = 0 for _ in range(Q): A, B = map(int, input().split()) _, l, r = ins.merge(A, B+1) ans = max(ans, r-l) print(ans)