結果
問題 |
No.2036 Max Middle
|
ユーザー |
|
提出日時 | 2025-05-09 14:44:44 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 33 ms / 2,000 ms |
コード長 | 7,318 bytes |
コンパイル時間 | 8,914 ms |
コンパイル使用メモリ | 306,252 KB |
実行使用メモリ | 7,844 KB |
最終ジャッジ日時 | 2025-05-09 14:44:55 |
合計ジャッジ時間 | 6,543 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 4 |
other | AC * 17 |
ソースコード
// competitive-verifier: PROBLEM #include <algorithm> #include <cstdint> #include <vector> #include <iterator> /// @brief 座標圧縮 template <class T> struct coordinate_compression { coordinate_compression() = default; coordinate_compression(const std::vector<T> &_data) : data(_data) { build(); } const T &operator[](int i) const { return data[i]; } void add(T x) { data.emplace_back(x); } void build() { std::sort(data.begin(), data.end()); data.erase(std::unique(data.begin(), data.end()), data.end()); } bool exists(T x) const { auto it = std::lower_bound(data.begin(), data.end(), x); return it != data.end() && *it == x; } int get(T x) const { return std::distance(data.begin(), std::lower_bound(data.begin(), data.end(), x)); } int lower_bound(T x) const { return std::distance(data.begin(), std::lower_bound(data.begin(), data.end(), x)); } int upper_bound(T x) const { return std::distance(data.begin(), std::upper_bound(data.begin(), data.end(), x)); } std::vector<int> compress(const std::vector<T> &v) const { int n = v.size(); std::vector<int> res(n); for (int i = 0; i < n; ++i) res[i] = get(v[i]); return res; } int size() const { return data.size(); } private: std::vector<T> data; }; /// @brief 座標圧縮 template <class T> std::vector<int> compress(const std::vector<T> &v) { coordinate_compression cps(v); std::vector<int> res; res.reserve(std::size(v)); for (auto &&x : v) res.emplace_back(cps.get(x)); return res; } #include <cassert> /** * @brief フェニック木 * @see http://hos.ac/slides/20140319_bit.pdf * * @tparam T */ template <class T> struct fenwick_tree { fenwick_tree() : _size(), data() {} fenwick_tree(int n) : _size(n + 1), data(n + 1) {} template <class U> fenwick_tree(const std::vector<U> &v) : _size((int)v.size() + 1), data((int)v.size() + 1) { build(v); } T operator[](int i) const { return sum(i, i + 1); } T at(int k) const { return operator[](k); } T get(int k) const { return operator[](k); } template <class U> void build(const std::vector<U> &v) { for (int i = 0, n = v.size(); i < n; ++i) data[i + 1] = v[i]; for (int i = 1; i < _size; ++i) { if (i + (i & -i) < _size) data[i + (i & -i)] += data[i]; } } void set(int k, T val) { add(k, val - at(k)); } void update(int k, T val) { set(k); } void add(int k, T val) { assert(0 <= k && k < _size - 1); for (++k; k < _size; k += k & -k) data[k] += val; } bool chmax(int k, T val) { if (at(k) >= val) return false; set(k, val); return true; } bool chmin(int k, T val) { if (at(k) <= val) return false; set(k, val); return true; } T all_prod() const { return prod(_size - 1); } T prod(int k) const { return sum(k); } T prod(int a, int b) const { return sum(a, b); } T all_sum() const { return sum(_size - 1); } T sum(int k) const { assert(0 <= k && k < _size); T res = 0; for (; k > 0; k -= k & -k) res += data[k]; return res; } T sum(int a, int b) const { assert(0 <= a && a <= b && b < _size); T res = T(); while (a != b) { if (a < b) { res += data[b]; b -= b & -b; } else { res -= data[a]; a -= a & -a; } } return res; } int lower_bound(T val) const { if (val <= 0) return 0; int k = 1; while (k < _size) k <<= 1; int res = 0; for (; k > 0; k >>= 1) { if (res + k < _size && data[res + k] < val) val -= data[res += k]; } return res; } private: int _size; std::vector<T> data; }; /// @brief 転倒数 template <class T> std::int64_t inversion_number(const std::vector<T> &v) { if (v.empty()) return 0; auto u = compress(v); std::reverse(u.begin(), u.end()); fenwick_tree<T> bit(*std::max_element(u.begin(), u.end()) + 1); std::int64_t res = 0; for (auto x : u) { res += bit.sum(x); bit.add(x, 1); } return res; } #ifdef ATCODER #pragma GCC target("sse4.2,avx512f,avx512dq,avx512ifma,avx512cd,avx512bw,avx512vl,bmi2") #endif #pragma GCC optimize("Ofast,fast-math,unroll-all-loops") #include <bits/stdc++.h> #ifndef ATCODER #pragma GCC target("sse4.2,avx2,bmi2") #endif template <class T, class U> constexpr bool chmax(T &a, const U &b) { return a < (T)b ? a = (T)b, true : false; } template <class T, class U> constexpr bool chmin(T &a, const U &b) { return (T)b < a ? a = (T)b, true : false; } constexpr std::int64_t INF = 1000000000000000003; constexpr int Inf = 1000000003; constexpr double EPS = 1e-7; constexpr double PI = 3.14159265358979323846; #define FOR(i, m, n) for (int i = (m); i < int(n); ++i) #define FORR(i, m, n) for (int i = (m)-1; i >= int(n); --i) #define FORL(i, m, n) for (int64_t i = (m); i < int64_t(n); ++i) #define rep(i, n) FOR (i, 0, n) #define repn(i, n) FOR (i, 1, n + 1) #define repr(i, n) FORR (i, n, 0) #define repnr(i, n) FORR (i, n + 1, 1) #define all(s) (s).begin(), (s).end() struct Sonic { Sonic() { std::ios::sync_with_stdio(false); std::cin.tie(nullptr); std::cout << std::fixed << std::setprecision(20); } constexpr void operator()() const {} } sonic; using namespace std; using ll = std::int64_t; using ld = long double; template <class T, class U> std::istream &operator>>(std::istream &is, std::pair<T, U> &p) { return is >> p.first >> p.second; } template <class T> std::istream &operator>>(std::istream &is, std::vector<T> &v) { for (T &i : v) is >> i; return is; } template <class T, class U> std::ostream &operator<<(std::ostream &os, const std::pair<T, U> &p) { return os << '(' << p.first << ',' << p.second << ')'; } template <class T> std::ostream &operator<<(std::ostream &os, const std::vector<T> &v) { for (auto it = v.begin(); it != v.end(); ++it) os << (it == v.begin() ? "" : " ") << *it; return os; } template <class Head, class... Tail> void co(Head &&head, Tail &&...tail) { if constexpr (sizeof...(tail) == 0) std::cout << head << '\n'; else std::cout << head << ' ', co(std::forward<Tail>(tail)...); } template <class Head, class... Tail> void ce(Head &&head, Tail &&...tail) { if constexpr (sizeof...(tail) == 0) std::cerr << head << '\n'; else std::cerr << head << ' ', ce(std::forward<Tail>(tail)...); } void Yes(bool is_correct = true) { std::cout << (is_correct ? "Yes\n" : "No\n"); } void No(bool is_not_correct = true) { Yes(!is_not_correct); } void YES(bool is_correct = true) { std::cout << (is_correct ? "YES\n" : "NO\n"); } void NO(bool is_not_correct = true) { YES(!is_not_correct); } void Takahashi(bool is_correct = true) { std::cout << (is_correct ? "Takahashi" : "Aoki") << '\n'; } void Aoki(bool is_not_correct = true) { Takahashi(!is_not_correct); } int main(void) { int n; cin >> n; vector<int> a(n); cin >> a; vector<int> b(n - 1); rep (i, n - 1) b[i] = a[i] < a[i + 1]; co(inversion_number(b)); return 0; }