結果
問題 | No.1720 Division Permutation |
ユーザー |
![]() |
提出日時 | 2025-05-13 22:56:14 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 251 ms / 4,000 ms |
コード長 | 14,221 bytes |
コンパイル時間 | 3,909 ms |
コンパイル使用メモリ | 297,348 KB |
実行使用メモリ | 33,372 KB |
最終ジャッジ日時 | 2025-05-13 22:56:29 |
合計ジャッジ時間 | 15,621 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 60 |
ソースコード
#include <bits/stdc++.h> using namespace std; using ll=long long; using ull=unsigned long long; using P=pair<ll,ll>; template<typename T>using minque=priority_queue<T,vector<T>,greater<T>>; template<typename T>bool chmax(T &a,const T &b){return (a<b?(a=b,true):false);} template<typename T>bool chmin(T &a,const T &b){return (a>b?(a=b,true):false);} template<typename T1,typename T2>istream &operator>>(istream &is,pair<T1,T2>&p){is>>p.first>>p.second;return is;} template<typename T1,typename T2,typename T3>istream &operator>>(istream &is,tuple<T1,T2,T3>&a){is>>std::get<0>(a)>>std::get<1>(a)>>std::get<2>(a);return is;} template<typename T,size_t n>istream &operator>>(istream &is,array<T,n>&a){for(auto&i:a)is>>i;return is;} template<typename T>istream &operator>>(istream &is,vector<T> &a){for(auto &i:a)is>>i;return is;} template<typename T1,typename T2>void operator++(pair<T1,T2>&a,int n){a.first++,a.second++;} template<typename T1,typename T2>void operator--(pair<T1,T2>&a,int n){a.first--,a.second--;} template<typename T>void operator++(vector<T>&a,int n){for(auto &i:a)i++;} template<typename T>void operator--(vector<T>&a,int n){for(auto &i:a)i--;} #define overload3(_1,_2,_3,name,...) name #define rep1(i,n) for(int i=0;i<(int)(n);i++) #define rep2(i,l,r) for(int i=(int)(l);i<(int)(r);i++) #define rep(...) overload3(__VA_ARGS__,rep2,rep1)(__VA_ARGS__) #define reps(i,l,r) rep2(i,l,r) #define all(x) x.begin(),x.end() #define pcnt(x) __builtin_popcountll(x) #define fin(x) return cout<<(x)<<'\n',static_cast<void>(0) #define yn(x) cout<<((x)?"Yes\n":"No\n") #define uniq(x) sort(all(x)),x.erase(unique(all(x)),x.end()) template<typename T> inline int fkey(vector<T>&z,T key){return lower_bound(z.begin(),z.end(),key)-z.begin();} ll myceil(ll a,ll b){return (a+b-1)/b;} template<typename T,size_t n,size_t id=0> auto vec(const int (&d)[n],const T &init=T()){ if constexpr (id<n)return vector(d[id],vec<T,n,id+1>(d,init)); else return init; } #ifdef LOCAL #include<debug.h> #define SWITCH(a,b) (a) #else #define debug(...) static_cast<void>(0) #define debugg(...) static_cast<void>(0) #define SWITCH(a,b) (b) template<typename T1,typename T2>ostream &operator<<(ostream &os,const pair<T1,T2>&p){os<<p.first<<' '<<p.second;return os;} #endif struct Timer{ clock_t start; Timer(){ start=clock(); ios::sync_with_stdio(false); cin.tie(nullptr); cout<<fixed<<setprecision(16); } inline double now(){return (double)(clock()-start)/1000;} #ifdef LOCAL ~Timer(){ cerr<<"time:"; cerr<<now(); cerr<<"ms\n"; } #endif }timer; void SOLVE(); int main(){ int testcase=1; //cin>>testcase; for(int i=0;i<testcase;i++){ SOLVE(); } } #include<type_traits> #include<concepts> template<typename T> constexpr std::enable_if_t<std::numeric_limits<T>::digits<=32,int>msb(T n){return n==0?-1:31-__builtin_clz(n);} template<typename T> constexpr std::enable_if_t<(std::numeric_limits<T>::digits>32),int>msb(T n){return n==0?-1:63-__builtin_clzll(n);} template<typename T> constexpr std::enable_if_t<std::numeric_limits<T>::digits<=32,int>lsb(T n){return n==0?-1:__builtin_ctz(n);} template<typename T> constexpr std::enable_if_t<(std::numeric_limits<T>::digits>32),int>lsb(T n){return n==0?-1:__builtin_ctzll(n);} template<typename T> constexpr std::enable_if_t<std::is_integral_v<T>,T>floor_pow2(T n){return n==0?0:T(1)<<msb(n);} template<typename T> constexpr std::enable_if_t<std::is_integral_v<T>,T>ceil_pow2(T n){return n<=1?1:T(1)<<(msb(n-1)+1);} template<std::integral T> constexpr T safe_div(T a,T b){return a>=0?a/b:-((-a+b-1)/b);} template<typename M> struct LazySegmentTree{ private: using S=typename M::S; using F=typename M::F; int n,z; int log2n; std::vector<S>dat; std::vector<F>lazy; inline void propagate(int i,const F&f){ dat[i]=M::mapping(f,dat[i],1<<(log2n-msb(i))); lazy[i]=M::composition(f,lazy[i]); } inline void push(int i){ if(i<z){ propagate(i*2,lazy[i]); propagate(i*2+1,lazy[i]); lazy[i]=M::id(); } } inline void update(int i){ dat[i]=M::op(dat[i*2],dat[i*2+1]); } inline void path_push(int i){ int l=lsb(i); for(int j=log2n;j>l;j--)push(i>>j); } inline void path_update(int i){ int l=lsb(i); i>>=(l+1); while(i){ update(i); i>>=1; } } public: LazySegmentTree():n(0),z(0),log2n(0){} explicit LazySegmentTree(int n_):n(n_),z(ceil_pow2(n_)){ log2n=msb(z); dat.resize(z*2,M::e()),lazy.resize(z*2,M::id()); } explicit LazySegmentTree(const std::vector<S>&init):n(init.size()),z(ceil_pow2((int)init.size())){ log2n=msb(z); dat.resize(z*2,M::e()),lazy.resize(z*2,M::id()); for(int i=0;i<n;i++)dat[i+z]=init[i]; for(int i=z-1;i>=1;i--)update(i); } void set(int i,const S&x){ i+=z; for(int j=log2n;j>0;j--)push(i>>j); dat[i]=x; i>>=1; while(i){ update(i); i>>=1; } } S get(int i){ i+=z; for(int j=log2n;j>0;j--)push(i>>j); return dat[i]; } void apply(int l,int r,const F&f){ l+=z,r+=z; path_push(l),path_push(r); int l2=l,r2=r; while(l<r){ if(l&1)propagate(l++,f); if(r&1)propagate(--r,f); l>>=1,r>>=1; } path_update(l2),path_update(r2); } S prod(int l,int r){ l+=z,r+=z; path_push(l),path_push(r); S left=M::e(),right=M::e(); while(l<r){ if(l&1)left=M::op(left,dat[l++]); if(r&1)right=M::op(dat[--r],right); l>>=1,r>>=1; } return M::op(left,right); } inline S all_prod()const{return dat[1];} std::vector<S>get_all(){ for(int i=1;i<z;i++)push(i); return std::vector<S>(dat.begin()+z,dat.begin()+z+n); } friend std::ostream &operator<<(std::ostream&os,const LazySegmentTree&seg){ std::vector<F>lazy2(seg.lazy); for(int i=0;i<seg.n;i++)lazy2[i+seg.z]=M::id(); for(int i=1;i<seg.z;i++){ lazy2[i*2]=M::composition(lazy2[i],lazy2[i*2]); lazy2[i*2+1]=M::composition(lazy2[i],lazy2[i*2+1]); } os<<"{"; for(int i=0;i<seg.n;i++)os<<M::mapping(lazy2[i+seg.z],seg.dat[i+seg.z],1)<<",}"[i+1==seg.n]; if(seg.n==0)os<<"}"; return os; } }; template<typename T> struct RangeAddRangeMin{ static_assert(std::is_arithmetic_v<T>); using S=T; using F=T; static inline S op(const S&x,const S&y){return x<y?x:y;} static inline S e(){return std::numeric_limits<S>::max()/2;} static inline S mapping(const F&f,const S&x,long long){return x+f;} static inline F composition(const F&f,const F&g){return f+g;} static inline F id(){return 0;} static inline void revS(S&x){} static inline S pow(const S&x,long long){return x;} }; struct PermutationTree{ enum node_type{ inc,dec,prime,leaf }; struct node{ int par; int l,r; int x; std::vector<int>child; node_type type; }; int root=-1; std::vector<node>nd; PermutationTree(const std::vector<int>p){ std::vector<int>mn,mx,st; LazySegmentTree<RangeAddRangeMin<int>>seg(std::vector<int>(p.size())); auto add=[&](int par,int ch)->void { nd[par].child.push_back(ch); nd[ch].par=par; nd[par].l=std::min(nd[par].l,nd[ch].l); nd[par].r=std::max(nd[par].r,nd[ch].r); nd[par].x=std::min(nd[par].x,nd[ch].x); }; for(int i=0;i<(int)p.size();i++){ while(!mn.empty()){ int j=mn.back(); if(p[j]>p[i]){ mn.pop_back(); seg.apply(mn.empty()?0:mn.back()+1,j+1,p[j]-p[i]); } else break; } mn.push_back(i); while(!mx.empty()){ int j=mx.back(); if(p[j]<p[i]){ mx.pop_back(); seg.apply(mx.empty()?0:mx.back()+1,j+1,p[i]-p[j]); } else break; } mx.push_back(i); int now=nd.size(); { node &n=nd.emplace_back(); n.l=i,n.r=i+1,n.type=node_type::leaf,n.x=p[i]; } while(true){ node_type t=node_type::leaf; if(!st.empty()&&nd[st.back()].x+nd[st.back()].r-nd[st.back()].l==nd[now].x)t=node_type::inc; if(!st.empty()&&nd[st.back()].x==nd[now].x+nd[now].r-nd[now].l)t=node_type::dec; if(t!=node_type::leaf){ node&v=nd[st.back()]; if(v.type==t){ add(st.back(),now); now=st.back(); st.pop_back(); } else{ int j=st.back(); node&n=nd.emplace_back(); n.type=t,n.l=nd[j].l,n.r=nd[j].r,n.x=nd[j].x; n.child.push_back(j); nd[j].par=nd.size()-1; add(nd.size()-1,now); now=nd.size()-1; st.pop_back(); } } else if(seg.prod(0,i-(nd[now].r-nd[now].l)+1)==0){ node&n=nd.emplace_back(); n.l=nd[now].l,n.r=nd[now].r,n.x=nd[now].x; n.child.push_back(now); nd[now].par=nd.size()-1; n.type=node_type::prime; now=nd.size()-1; int y=n.x+n.r-n.l; do{ add(now,st.back()); y=std::max(y,nd[st.back()].x+nd[st.back()].r-nd[st.back()].l); st.pop_back(); }while(y-nd[now].x!=nd[now].r-nd[now].l); std::reverse(nd[now].child.begin(),nd[now].child.end()); } else break; } st.push_back(now); seg.apply(0,i+1,-1); } root=st[0]; nd[root].par=-1; } node& operator[](int i){return nd[i];} const node& operator[](int i)const{return nd[i];} int size()const{return nd.size();} }; #include<optional> constexpr int carmichael_constexpr(int n){ if(n==998244353)return 998244352; if(n==1000000007)return 1000000006; if(n<=1)return n; int res=1; int t=0; while(n%2==0){ n/=2; t++; } if(t==2)res=2; else if(t>=3)res=1<<(t-2); for(int i=3;i*i<=n;i++)if(n%i==0){ int c=0; while(n%i==0){ n/=i; c++; } int prod=i-1; for(int j=0;j<c-1;j++)prod*=i; res=std::lcm(res,prod); } if(n!=1)res=std::lcm(res,n-1); return res; } template<int m> struct mod_int{ private: static constexpr unsigned int umod=static_cast<unsigned int>(m); static constexpr unsigned int car=carmichael_constexpr(m); using uint=unsigned int; using mint=mod_int; uint v; static_assert(m<uint(1)<<31); mint sqrt_impl()const{ if(this->val()<=1)return *this; if constexpr(m%8==1){ mint b=2; while(b.pow((m-1)/2).val()==1)b++; int m2=m-1,e=0; while(m2%2==0)m2>>=1,e++; mint x=this->pow((m2-1)/2); mint y=(*this)*x*x; x*=*this; mint z=b.pow(m2); while(y.val()!=1){ int j=0; mint t=y; while(t.val()!=1)t*=t,j++; z=z.pow(1<<(e-j-1)); x*=z; z*=z; y*=z;e=j; } return x; } else if constexpr(m%8==5){ mint ret=this->pow((m+3)/8); if((ret*ret).val()==this->val())return ret; else return ret*mint::raw(2).pow((m-1)/4); } else{ return this->pow((m+1)/4); } } public: using value_type=uint; mod_int():v(0){} template<typename T,std::enable_if_t<std::is_signed_v<T>,std::nullptr_t> =nullptr> mod_int(T a){ a%=m; if(a<0)v=a+umod; else v=a; } template<typename T,std::enable_if_t<std::is_unsigned_v<T>,std::nullptr_t> =nullptr> mod_int(T a):v(a%umod){} static constexpr mint raw(int a){ mint ret; ret.v=a; return ret; } inline uint val()const{return this->v;} static constexpr int mod(){return m;} inline mint &operator+=(const mint &b){ this->v+=b.v; if(this->v>=umod)this->v-=umod; return *this; } inline mint &operator-=(const mint &b){ this->v-=b.v; if(this->v>=umod)this->v+=umod; return *this; } inline mint &operator*=(const mint &b){ this->v=((unsigned long long)this->v*b.v)%umod; return *this; } inline mint &operator/=(const mint &b){ *this*=b.inv(); return *this; } inline mint operator+()const{return *this;} inline mint operator-()const{return mint()-*this;} friend inline mint operator+(const mint &a,const mint &b){return mint(a)+=b;} friend inline mint operator-(const mint &a,const mint &b){return mint(a)-=b;} friend inline mint operator*(const mint &a,const mint &b){return mint(a)*=b;} friend inline mint operator/(const mint &a,const mint &b){return mint(a)/=b;} friend inline bool operator==(const mint &a,const mint &b){return a.val()==b.val();} friend inline bool operator!=(const mint &a,const mint &b){return !(a==b);} inline mint operator++(int){ mint ret=*this; *this+=mint::raw(1); return ret; } inline mint operator--(int){ mint ret=*this; *this-=mint::raw(1); return ret; } mint pow(long long n)const{ mint ret=mint::raw(1),a(*this); while(n){ if(n&1)ret*=a; a*=a; n>>=1; } return ret; } inline mint inv()const{ assert(this->v!=0); return pow(car-1); } std::optional<mint>sqrt()const{ if(this->val()<=1||this->pow((m-1)/2)==1)return std::make_optional(this->sqrt_impl()); else return std::nullopt; } static constexpr unsigned int order(){return car;} friend std::istream &operator>>(std::istream &is,mint &b){ long long a; is>>a; b=mint(a); return is; } friend std::ostream &operator<<(std::ostream &os,const mint &b){ os<<b.val(); return os; } }; template<int m> struct std::hash<mod_int<m>>{ std::size_t operator()(mod_int<m>x)const{ return std::hash<unsigned int>()(x.val()); } }; using mint998=mod_int<998244353>; using mint107=mod_int<1000000007>; using mint=mint998; void SOLVE(){ int n,k; cin>>n>>k; vector<int>p(n); cin>>p; p--; PermutationTree pt(p); vector<vector<mint>>dp(n+1,vector<mint>(k+1)); dp[0][0]=1; auto dfs=[&](auto self,int x)->void { if(pt[x].type==pt.prime||pt[x].type==pt.leaf){ rep(i,k)dp[pt[x].r][i+1]+=dp[pt[x].l][i]; if(pt[x].type==pt.leaf)return; } vector<mint>s(dp[pt[x].l]); for(int c:pt[x].child){ self(self,c); if(pt[x].type==pt.inc||pt[x].type==pt.dec){ rep(i,k){ dp[pt[c].r][i+1]+=s[i]; dp[pt[c].r][i+1]-=dp[pt[c].l][i]; s[i]+=dp[pt[c].r][i]; } } } }; dfs(dfs,pt.root); rep(i,1,k+1)cout<<dp[n][i]<<'\n'; }