結果

問題 No.1720 Division Permutation
ユーザー Taiki0715
提出日時 2025-05-13 22:56:14
言語 C++23
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 251 ms / 4,000 ms
コード長 14,221 bytes
コンパイル時間 3,909 ms
コンパイル使用メモリ 297,348 KB
実行使用メモリ 33,372 KB
最終ジャッジ日時 2025-05-13 22:56:29
合計ジャッジ時間 15,621 ms
ジャッジサーバーID
(参考情報)
judge5 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 60
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
using ll=long long;
using ull=unsigned long long;
using P=pair<ll,ll>;
template<typename T>using minque=priority_queue<T,vector<T>,greater<T>>;
template<typename T>bool chmax(T &a,const T &b){return (a<b?(a=b,true):false);}
template<typename T>bool chmin(T &a,const T &b){return (a>b?(a=b,true):false);}
template<typename T1,typename T2>istream &operator>>(istream &is,pair<T1,T2>&p){is>>p.first>>p.second;return is;}
template<typename T1,typename T2,typename T3>istream &operator>>(istream &is,tuple<T1,T2,T3>&a){is>>std::get<0>(a)>>std::get<1>(a)>>std::get<2>(a);return is;}
template<typename T,size_t n>istream &operator>>(istream &is,array<T,n>&a){for(auto&i:a)is>>i;return is;}
template<typename T>istream &operator>>(istream &is,vector<T> &a){for(auto &i:a)is>>i;return is;}
template<typename T1,typename T2>void operator++(pair<T1,T2>&a,int n){a.first++,a.second++;}
template<typename T1,typename T2>void operator--(pair<T1,T2>&a,int n){a.first--,a.second--;}
template<typename T>void operator++(vector<T>&a,int n){for(auto &i:a)i++;}
template<typename T>void operator--(vector<T>&a,int n){for(auto &i:a)i--;}
#define overload3(_1,_2,_3,name,...) name
#define rep1(i,n) for(int i=0;i<(int)(n);i++)
#define rep2(i,l,r) for(int i=(int)(l);i<(int)(r);i++)
#define rep(...) overload3(__VA_ARGS__,rep2,rep1)(__VA_ARGS__)
#define reps(i,l,r) rep2(i,l,r)
#define all(x) x.begin(),x.end()
#define pcnt(x) __builtin_popcountll(x)
#define fin(x) return cout<<(x)<<'\n',static_cast<void>(0)
#define yn(x) cout<<((x)?"Yes\n":"No\n")
#define uniq(x) sort(all(x)),x.erase(unique(all(x)),x.end())
template<typename T>
inline int fkey(vector<T>&z,T key){return lower_bound(z.begin(),z.end(),key)-z.begin();}
ll myceil(ll a,ll b){return (a+b-1)/b;}
template<typename T,size_t n,size_t id=0>
auto vec(const int (&d)[n],const T &init=T()){
  if constexpr (id<n)return vector(d[id],vec<T,n,id+1>(d,init));
  else return init;
}
#ifdef LOCAL
#include<debug.h>
#define SWITCH(a,b) (a)
#else
#define debug(...) static_cast<void>(0)
#define debugg(...) static_cast<void>(0)
#define SWITCH(a,b) (b)
template<typename T1,typename T2>ostream &operator<<(ostream &os,const pair<T1,T2>&p){os<<p.first<<' '<<p.second;return os;}
#endif
struct Timer{
  clock_t start;
  Timer(){
    start=clock();
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    cout<<fixed<<setprecision(16);
  }
  inline double now(){return (double)(clock()-start)/1000;}
  #ifdef LOCAL
  ~Timer(){
    cerr<<"time:";
    cerr<<now();
    cerr<<"ms\n";
  }
  #endif
}timer;
void SOLVE();
int main(){
  int testcase=1;
  //cin>>testcase;
  for(int i=0;i<testcase;i++){
    SOLVE();
  }
}
#include<type_traits>
#include<concepts>
template<typename T>
constexpr std::enable_if_t<std::numeric_limits<T>::digits<=32,int>msb(T n){return n==0?-1:31-__builtin_clz(n);}
template<typename T>
constexpr std::enable_if_t<(std::numeric_limits<T>::digits>32),int>msb(T n){return n==0?-1:63-__builtin_clzll(n);}

template<typename T>
constexpr std::enable_if_t<std::numeric_limits<T>::digits<=32,int>lsb(T n){return n==0?-1:__builtin_ctz(n);}
template<typename T>
constexpr std::enable_if_t<(std::numeric_limits<T>::digits>32),int>lsb(T n){return n==0?-1:__builtin_ctzll(n);}

template<typename T>
constexpr std::enable_if_t<std::is_integral_v<T>,T>floor_pow2(T n){return n==0?0:T(1)<<msb(n);}

template<typename T>
constexpr std::enable_if_t<std::is_integral_v<T>,T>ceil_pow2(T n){return n<=1?1:T(1)<<(msb(n-1)+1);}

template<std::integral T>
constexpr T safe_div(T a,T b){return a>=0?a/b:-((-a+b-1)/b);}
template<typename M>
struct LazySegmentTree{
private:
  using S=typename M::S;
  using F=typename M::F;
  int n,z;
  int log2n;
  std::vector<S>dat;
  std::vector<F>lazy;
  inline void propagate(int i,const F&f){
    dat[i]=M::mapping(f,dat[i],1<<(log2n-msb(i)));
    lazy[i]=M::composition(f,lazy[i]);
  }
  inline void push(int i){
    if(i<z){
      propagate(i*2,lazy[i]);
      propagate(i*2+1,lazy[i]);
      lazy[i]=M::id();
    }
  }
  inline void update(int i){
    dat[i]=M::op(dat[i*2],dat[i*2+1]);
  }
  inline void path_push(int i){
    int l=lsb(i);
    for(int j=log2n;j>l;j--)push(i>>j);
  }
  inline void path_update(int i){
    int l=lsb(i);
    i>>=(l+1);
    while(i){
      update(i);
      i>>=1;
    }
  }
public:
  LazySegmentTree():n(0),z(0),log2n(0){}
  explicit LazySegmentTree(int n_):n(n_),z(ceil_pow2(n_)){
    log2n=msb(z);
    dat.resize(z*2,M::e()),lazy.resize(z*2,M::id());
  }
  explicit LazySegmentTree(const std::vector<S>&init):n(init.size()),z(ceil_pow2((int)init.size())){
    log2n=msb(z);
    dat.resize(z*2,M::e()),lazy.resize(z*2,M::id());
    for(int i=0;i<n;i++)dat[i+z]=init[i];
    for(int i=z-1;i>=1;i--)update(i);
  }
  void set(int i,const S&x){
    i+=z;
    for(int j=log2n;j>0;j--)push(i>>j);
    dat[i]=x;
    i>>=1;
    while(i){
      update(i);
      i>>=1;
    }
  }
  S get(int i){
    i+=z;
    for(int j=log2n;j>0;j--)push(i>>j);
    return dat[i];
  }
  void apply(int l,int r,const F&f){
    l+=z,r+=z;
    path_push(l),path_push(r);
    int l2=l,r2=r;
    while(l<r){
      if(l&1)propagate(l++,f);
      if(r&1)propagate(--r,f);
      l>>=1,r>>=1;
    }
    path_update(l2),path_update(r2);
  }
  S prod(int l,int r){
    l+=z,r+=z;
    path_push(l),path_push(r);
    S left=M::e(),right=M::e();
    while(l<r){
      if(l&1)left=M::op(left,dat[l++]);
      if(r&1)right=M::op(dat[--r],right);
      l>>=1,r>>=1;
    }
    return M::op(left,right);
  }
  inline S all_prod()const{return dat[1];}
  std::vector<S>get_all(){
    for(int i=1;i<z;i++)push(i);
    return std::vector<S>(dat.begin()+z,dat.begin()+z+n);
  }
  friend std::ostream &operator<<(std::ostream&os,const LazySegmentTree&seg){
    std::vector<F>lazy2(seg.lazy);
    for(int i=0;i<seg.n;i++)lazy2[i+seg.z]=M::id();
    for(int i=1;i<seg.z;i++){
      lazy2[i*2]=M::composition(lazy2[i],lazy2[i*2]);
      lazy2[i*2+1]=M::composition(lazy2[i],lazy2[i*2+1]);
    }
    os<<"{";
    for(int i=0;i<seg.n;i++)os<<M::mapping(lazy2[i+seg.z],seg.dat[i+seg.z],1)<<",}"[i+1==seg.n];
    if(seg.n==0)os<<"}";
    return os;
  }
};
template<typename T>
struct RangeAddRangeMin{
  static_assert(std::is_arithmetic_v<T>);
  using S=T;
  using F=T;
  static inline S op(const S&x,const S&y){return x<y?x:y;}
  static inline S e(){return std::numeric_limits<S>::max()/2;}
  static inline S mapping(const F&f,const S&x,long long){return x+f;}
  static inline F composition(const F&f,const F&g){return f+g;}
  static inline F id(){return 0;}
  static inline void revS(S&x){}
  static inline S pow(const S&x,long long){return x;}
};
struct PermutationTree{
  enum node_type{
    inc,dec,prime,leaf
  };
  struct node{
    int par;
    int l,r;
    int x;
    std::vector<int>child;
    node_type type;
  };
  int root=-1;
  std::vector<node>nd;
  PermutationTree(const std::vector<int>p){
    std::vector<int>mn,mx,st;
    LazySegmentTree<RangeAddRangeMin<int>>seg(std::vector<int>(p.size()));
    auto add=[&](int par,int ch)->void {
      nd[par].child.push_back(ch);
      nd[ch].par=par;
      nd[par].l=std::min(nd[par].l,nd[ch].l);
      nd[par].r=std::max(nd[par].r,nd[ch].r);
      nd[par].x=std::min(nd[par].x,nd[ch].x);
    };
    for(int i=0;i<(int)p.size();i++){
      while(!mn.empty()){
        int j=mn.back();
        if(p[j]>p[i]){
          mn.pop_back();
          seg.apply(mn.empty()?0:mn.back()+1,j+1,p[j]-p[i]);
        }
        else break;
      }
      mn.push_back(i);
      while(!mx.empty()){
        int j=mx.back();
        if(p[j]<p[i]){
          mx.pop_back();
          seg.apply(mx.empty()?0:mx.back()+1,j+1,p[i]-p[j]);
        }
        else break;
      }
      mx.push_back(i);
      int now=nd.size();
      {
        node &n=nd.emplace_back();
        n.l=i,n.r=i+1,n.type=node_type::leaf,n.x=p[i];
      }
      while(true){
        node_type t=node_type::leaf;
        if(!st.empty()&&nd[st.back()].x+nd[st.back()].r-nd[st.back()].l==nd[now].x)t=node_type::inc;
        if(!st.empty()&&nd[st.back()].x==nd[now].x+nd[now].r-nd[now].l)t=node_type::dec;
        if(t!=node_type::leaf){
          node&v=nd[st.back()];
          if(v.type==t){
            add(st.back(),now);
            now=st.back();
            st.pop_back();
          }
          else{
            int j=st.back();
            node&n=nd.emplace_back();
            n.type=t,n.l=nd[j].l,n.r=nd[j].r,n.x=nd[j].x;
            n.child.push_back(j);
            nd[j].par=nd.size()-1;
            add(nd.size()-1,now);
            now=nd.size()-1;
            st.pop_back();
          }
        }
        else if(seg.prod(0,i-(nd[now].r-nd[now].l)+1)==0){
          node&n=nd.emplace_back();
          n.l=nd[now].l,n.r=nd[now].r,n.x=nd[now].x;
          n.child.push_back(now);
          nd[now].par=nd.size()-1;
          n.type=node_type::prime;
          now=nd.size()-1;
          int y=n.x+n.r-n.l;
          do{
            add(now,st.back());
            y=std::max(y,nd[st.back()].x+nd[st.back()].r-nd[st.back()].l);
            st.pop_back();
          }while(y-nd[now].x!=nd[now].r-nd[now].l);
          std::reverse(nd[now].child.begin(),nd[now].child.end());
        }
        else break;
      }
      st.push_back(now);
      seg.apply(0,i+1,-1);
    }
    root=st[0];
    nd[root].par=-1;
  }
  node& operator[](int i){return nd[i];}
  const node& operator[](int i)const{return nd[i];}
  int size()const{return nd.size();}
};
#include<optional>
constexpr int carmichael_constexpr(int n){
  if(n==998244353)return 998244352;
  if(n==1000000007)return 1000000006;
  if(n<=1)return n;
  int res=1;
  int t=0;
  while(n%2==0){
    n/=2;
    t++;
  }
  if(t==2)res=2;
  else if(t>=3)res=1<<(t-2);
  for(int i=3;i*i<=n;i++)if(n%i==0){
    int c=0;
    while(n%i==0){
      n/=i;
      c++;
    }
    int prod=i-1;
    for(int j=0;j<c-1;j++)prod*=i;
    res=std::lcm(res,prod);
  }
  if(n!=1)res=std::lcm(res,n-1);
  return res;
}
template<int m>
struct mod_int{
private:
  static constexpr unsigned int umod=static_cast<unsigned int>(m);
  static constexpr unsigned int car=carmichael_constexpr(m);
  using uint=unsigned int;
  using mint=mod_int;
  uint v;
  static_assert(m<uint(1)<<31);
  mint sqrt_impl()const{
    if(this->val()<=1)return *this;
    if constexpr(m%8==1){
      mint b=2;
      while(b.pow((m-1)/2).val()==1)b++;
      int m2=m-1,e=0;
      while(m2%2==0)m2>>=1,e++;
      mint x=this->pow((m2-1)/2);
      mint y=(*this)*x*x;
      x*=*this;
      mint z=b.pow(m2);
      while(y.val()!=1){
        int j=0;
        mint t=y;
        while(t.val()!=1)t*=t,j++;
        z=z.pow(1<<(e-j-1));
        x*=z;
        z*=z;
        y*=z;e=j;
      }
      return x;
    }
    else if constexpr(m%8==5){
      mint ret=this->pow((m+3)/8);
      if((ret*ret).val()==this->val())return ret;
      else return ret*mint::raw(2).pow((m-1)/4);
    }
    else{
      return this->pow((m+1)/4);
    }
  }
public:
  using value_type=uint;
  mod_int():v(0){}
  template<typename T,std::enable_if_t<std::is_signed_v<T>,std::nullptr_t> =nullptr>
  mod_int(T a){
    a%=m;
    if(a<0)v=a+umod;
    else v=a;
  }
  template<typename T,std::enable_if_t<std::is_unsigned_v<T>,std::nullptr_t> =nullptr>
  mod_int(T a):v(a%umod){}
  static constexpr mint raw(int a){
    mint ret;
    ret.v=a;
    return ret;
  }
  inline uint val()const{return this->v;}
  static constexpr int mod(){return m;}
  inline mint &operator+=(const mint &b){
    this->v+=b.v;
    if(this->v>=umod)this->v-=umod;
    return *this;
  }
  inline mint &operator-=(const mint &b){
    this->v-=b.v;
    if(this->v>=umod)this->v+=umod;
    return *this;
  }
  inline mint &operator*=(const mint &b){
    this->v=((unsigned long long)this->v*b.v)%umod;
    return *this;
  }
  inline mint &operator/=(const mint &b){
    *this*=b.inv();
    return *this;
  }
  inline mint operator+()const{return *this;}
  inline mint operator-()const{return mint()-*this;}
  friend inline mint operator+(const mint &a,const mint &b){return mint(a)+=b;}
  friend inline mint operator-(const mint &a,const mint &b){return mint(a)-=b;}
  friend inline mint operator*(const mint &a,const mint &b){return mint(a)*=b;}
  friend inline mint operator/(const mint &a,const mint &b){return mint(a)/=b;}
  friend inline bool operator==(const mint &a,const mint &b){return a.val()==b.val();}
  friend inline bool operator!=(const mint &a,const mint &b){return !(a==b);}
  inline mint operator++(int){
    mint ret=*this;
    *this+=mint::raw(1);
    return ret;
  }
  inline mint operator--(int){
    mint ret=*this;
    *this-=mint::raw(1);
    return ret;
  }
  mint pow(long long n)const{
    mint ret=mint::raw(1),a(*this);
    while(n){
      if(n&1)ret*=a;
      a*=a;
      n>>=1;
    }
    return ret;
  }
  inline mint inv()const{
    assert(this->v!=0);
    return pow(car-1);
  }
  std::optional<mint>sqrt()const{
    if(this->val()<=1||this->pow((m-1)/2)==1)return std::make_optional(this->sqrt_impl());
    else return std::nullopt;
  }
  static constexpr unsigned int order(){return car;}
  friend std::istream &operator>>(std::istream &is,mint &b){
    long long a;
    is>>a;
    b=mint(a);
    return is;
  }
  friend std::ostream &operator<<(std::ostream &os,const mint &b){
    os<<b.val();
    return os;
  }
};
template<int m>
struct std::hash<mod_int<m>>{
  std::size_t operator()(mod_int<m>x)const{
    return std::hash<unsigned int>()(x.val());
  }
};
using mint998=mod_int<998244353>;
using mint107=mod_int<1000000007>;
using mint=mint998;
void SOLVE(){
  int n,k;
  cin>>n>>k;
  vector<int>p(n);
  cin>>p;
  p--;
  PermutationTree pt(p);
  vector<vector<mint>>dp(n+1,vector<mint>(k+1));
  dp[0][0]=1;
  auto dfs=[&](auto self,int x)->void {
    if(pt[x].type==pt.prime||pt[x].type==pt.leaf){
      rep(i,k)dp[pt[x].r][i+1]+=dp[pt[x].l][i];
      if(pt[x].type==pt.leaf)return;
    }
    vector<mint>s(dp[pt[x].l]);
    for(int c:pt[x].child){
      self(self,c);
      if(pt[x].type==pt.inc||pt[x].type==pt.dec){
        rep(i,k){
          dp[pt[c].r][i+1]+=s[i];
          dp[pt[c].r][i+1]-=dp[pt[c].l][i];
          s[i]+=dp[pt[c].r][i];
        }
      }
    }
  };
  dfs(dfs,pt.root);
  rep(i,1,k+1)cout<<dp[n][i]<<'\n';
}
0