結果
問題 | No.308 素数は通れません |
ユーザー |
![]() |
提出日時 | 2025-05-14 12:48:58 |
言語 | PyPy3 (7.3.15) |
結果 |
WA
|
実行時間 | - |
コード長 | 3,430 bytes |
コンパイル時間 | 301 ms |
コンパイル使用メモリ | 82,632 KB |
実行使用メモリ | 85,396 KB |
最終ジャッジ日時 | 2025-05-14 12:50:14 |
合計ジャッジ時間 | 7,285 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 12 WA * 47 TLE * 2 -- * 46 |
ソースコード
import sys import random import math def is_prime(n): if n < 2: return False for p in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]: if n % p == 0: return n == p d = n - 1 s = 0 while d % 2 == 0: d //= 2 s += 1 for a in [2, 325, 9375, 28178, 450775, 9780504, 1795265022]: if a >= n: continue x = pow(a, d, n) if x == 1 or x == n - 1: continue for _ in range(s - 1): x = pow(x, 2, n) if x == n - 1: break else: return False return True def pollards_rho(n): if n % 2 == 0: return 2 if n % 3 == 0: return 3 if n % 5 == 0: return 5 while True: c = random.randint(1, n-1) f = lambda x: (pow(x, 2, n) + c) % n x, y, d = 2, 2, 1 while d == 1: x = f(x) y = f(f(y)) d = math.gcd(abs(x - y), n) if d != n: return d def factor(n): factors = [] def _factor(n): if n == 1: return if is_prime(n): factors.append(n) return d = pollards_rho(n) _factor(d) _factor(n // d) _factor(n) return sorted(factors) def divisors(n): if n == 0: return [] factors = factor(n) from collections import defaultdict cnt = defaultdict(int) for p in factors: cnt[p] += 1 divs = [1] for p, exp in cnt.items(): temp = [] for d in divs: current = d for e in range(1, exp + 1): current *= p temp.append(current) divs += temp divs = list(set(divs)) divs.sort() return divs def solve(): N = int(sys.stdin.readline()) if N == 1: print(1) return candidate = N - 1 def check_divisors(): if N - 1 == 0: return [] divs = divisors(N - 1) valid = [] for w in divs: if w == 0: continue if w >= N: continue k = (N - 1) // w ok = True for i in range(1, k + 1): num = i * w + 1 if num == 1: continue if is_prime(num): ok = False break if ok and w > 0: valid.append(w) return valid valid_divs = check_divisors() if valid_divs: min_div = min(valid_divs) else: min_div = float('inf') start = (N + 1) // 2 found = None for W in range(start, N): if W <= 0: continue if not is_prime(W + 1): h = (N - 1) // W + 1 row_start = (h - 1) * W + 1 row_length = N - row_start + 1 if row_length == 1: found = W break if row_length == 2: if not is_prime(row_start + 1): found = W break else: pass if found is not None and found < min_div and found < candidate: print(found) return if min_div != float('inf') and min_div < candidate: print(min_div) return if candidate < min_div: print(candidate) else: print(min_div) solve()