結果
| 問題 |
No.655 E869120 and Good Triangles
|
| コンテスト | |
| ユーザー |
qwewe
|
| 提出日時 | 2025-05-14 12:51:59 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 3,135 bytes |
| コンパイル時間 | 364 ms |
| コンパイル使用メモリ | 82,760 KB |
| 実行使用メモリ | 55,744 KB |
| 最終ジャッジ日時 | 2025-05-14 12:53:36 |
| 合計ジャッジ時間 | 4,780 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | -- * 3 |
| other | AC * 10 TLE * 1 -- * 19 |
ソースコード
import sys
from collections import deque
def main():
sys.setrecursionlimit(1 << 25)
N, K, P = map(int, sys.stdin.readline().split())
blacks = []
for _ in range(K):
x, y = map(int, sys.stdin.readline().split())
blacks.append((x, y))
# Initialize a[i][j] (1-based)
INF = float('inf')
a = [[INF] * (i + 1) for i in range(N + 1)]
q = deque()
for x, y in blacks:
a[x][y] = 0
q.append((x, y))
# Directions: up-left, up, left, right, down-left, down-right
directions = [(-1, -1), (-1, 0), (0, -1), (0, 1), (1, 0), (1, 1)]
while q:
i, j = q.popleft()
for di, dj in directions:
ni = i + di
nj = j + dj
if ni < 1 or ni > N:
continue
if nj < 1 or nj > ni:
continue
if a[ni][nj] > a[i][j] + 1:
a[ni][nj] = a[i][j] + 1
q.append((ni, nj))
# Compute row-wise prefix sums
prefix = [[0] * (i + 1) for i in range(N + 1)]
for i in range(1, N + 1):
for j in range(1, i + 1):
prefix[i][j] = prefix[i][j - 1] + a[i][j]
# Compute row_prefix_sum[j][i] = sum of prefix[1][j] to prefix[i][j]
row_prefix_sum = [[0] * (N + 1) for _ in range(N + 2)]
for j in range(0, N + 1):
current = 0
for i in range(0, N + 1):
if i == 0:
row_prefix_sum[j][i] = 0
else:
if j <= i and j >= 0:
current += prefix[i][j]
row_prefix_sum[j][i] = current
# Compute diagonal_prefix_sum
diagonal_prefix_sum = {}
max_c = - (N - 1)
for c in range(-(N - 1), 1):
diagonal_prefix_sum[c] = [0] * (N + 1)
current = 0
for i in range(1, N + 1):
j = i + c
if 1 <= j <= i:
current += prefix[i][j]
else:
current += 0
diagonal_prefix_sum[c][i] = current
total = 0
for x in range(1, N + 1):
for y in range(1, x + 1):
max_s = N - x + 1
if max_s < 1:
continue
c = y - x
# Binary search for minimal s where sum >= P
low = 1
high = max_s
ans = None
while low <= high:
mid = (low + high) // 2
s = mid
end_i = x + s - 1
if end_i > N:
high = mid - 1
continue
# Calculate sum_part1 and sum_part2
sum_part1 = diagonal_prefix_sum.get(c, [0]*(N+1))[end_i] - diagonal_prefix_sum.get(c, [0]*(N+1))[x-1]
sum_part2 = row_prefix_sum[y-1][end_i] - row_prefix_sum[y-1][x-1]
current_sum = sum_part1 - sum_part2
if current_sum >= P:
ans = mid
high = mid - 1
else:
low = mid + 1
if ans is not None:
total += max_s - ans + 1
print(total)
if __name__ == '__main__':
main()
qwewe