結果

問題 No.381 名声値を稼ごう Extra
ユーザー qwewe
提出日時 2025-05-14 12:58:07
言語 PyPy3
(7.3.15)
結果
RE  
実行時間 -
コード長 3,313 bytes
コンパイル時間 201 ms
コンパイル使用メモリ 82,884 KB
実行使用メモリ 57,832 KB
最終ジャッジ日時 2025-05-14 12:59:21
合計ジャッジ時間 671 ms
ジャッジサーバーID
(参考情報)
judge4 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 1 RE * 1
権限があれば一括ダウンロードができます

ソースコード

diff #

import sys

# Set a higher recursion depth limit if needed, although it's unlikely
# to be necessary for int.bit_count() which should be iterative.
# sys.setrecursionlimit(2000000) 

def solve():
    """
    Solves the problem: Reads a large integer N, calculates its population count (number of set bits),
    and prints the result modulo 1004535809.
    """
    
    # Read the input value N as a string from standard input.
    # .strip() removes any leading/trailing whitespace like newline characters.
    N_str = sys.stdin.readline().strip()
    
    # Convert the input string to an integer. Python's built-in `int` type
    # supports arbitrary precision integers, so it can handle N up to 10^1000000.
    try:
        N = int(N_str)
    except ValueError:
        # Basic error handling for invalid input format.
        print("Invalid input: Not a valid integer string.", file=sys.stderr)
        sys.exit(1) # Exit if input is not valid

    # Basic check for the constraint N >= 1.
    if N < 1:
         print("Invalid input: N must be at least 1.", file=sys.stderr)
         sys.exit(1)

    # Calculate the population count (number of set bits) of N.
    # The `int.bit_count()` method is available in Python 3.10+ and is highly efficient.
    # It directly counts the number of '1's in the binary representation of the integer.
    # This method is crucial for performance given the potentially large size of N.
    # If running on an older Python version without `bit_count`, a manual implementation
    # using bitwise operations would be needed, but it would likely be too slow.
    # The problem statement suggests Python, likely implying an environment where this is efficient.
    
    # Check if the bit_count method exists. This provides compatibility check and robustness.
    if hasattr(N, 'bit_count'):
        count = N.bit_count()
    else:
        # Provide an error message or warning if bit_count is not available.
        # Depending on the contest environment, one might need to implement a manual
        # bit counting loop here, but be aware of potential Time Limit Exceeded issues.
        print("Error: int.bit_count() method not found. Requires Python 3.10+.", file=sys.stderr)
        # As a fallback for demonstration, though likely too slow:
        # count = 0
        # temp_N = N
        # while temp_N > 0:
        #     if temp_N & 1:
        #         count += 1
        #     temp_N >>= 1
        # print("Warning: Using potentially slow manual bit counting.", file=sys.stderr)
        sys.exit(1) # Exit if the efficient method is not available.

    # Define the modulus as specified in the problem statement.
    MOD = 1004535809
    
    # The final answer is the population count modulo MOD.
    # The maximum possible population count is the number of bits in N,
    # which for N <= 10^1000000 is approximately 3.32 million.
    # This value is significantly smaller than MOD (approx. 1 billion).
    # So, the modulo operation typically doesn't change the result unless count is 0.
    # However, we must apply the modulo as requested.
    result = count % MOD
    
    # Print the final result to standard output.
    print(result)

# Standard boilerplate for running the solve function when the script is executed.
if __name__ == '__main__':
    solve()
0