結果
| 問題 |
No.381 名声値を稼ごう Extra
|
| コンテスト | |
| ユーザー |
qwewe
|
| 提出日時 | 2025-05-14 12:58:07 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
RE
|
| 実行時間 | - |
| コード長 | 3,313 bytes |
| コンパイル時間 | 201 ms |
| コンパイル使用メモリ | 82,884 KB |
| 実行使用メモリ | 57,832 KB |
| 最終ジャッジ日時 | 2025-05-14 12:59:21 |
| 合計ジャッジ時間 | 671 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 1 RE * 1 |
ソースコード
import sys
# Set a higher recursion depth limit if needed, although it's unlikely
# to be necessary for int.bit_count() which should be iterative.
# sys.setrecursionlimit(2000000)
def solve():
"""
Solves the problem: Reads a large integer N, calculates its population count (number of set bits),
and prints the result modulo 1004535809.
"""
# Read the input value N as a string from standard input.
# .strip() removes any leading/trailing whitespace like newline characters.
N_str = sys.stdin.readline().strip()
# Convert the input string to an integer. Python's built-in `int` type
# supports arbitrary precision integers, so it can handle N up to 10^1000000.
try:
N = int(N_str)
except ValueError:
# Basic error handling for invalid input format.
print("Invalid input: Not a valid integer string.", file=sys.stderr)
sys.exit(1) # Exit if input is not valid
# Basic check for the constraint N >= 1.
if N < 1:
print("Invalid input: N must be at least 1.", file=sys.stderr)
sys.exit(1)
# Calculate the population count (number of set bits) of N.
# The `int.bit_count()` method is available in Python 3.10+ and is highly efficient.
# It directly counts the number of '1's in the binary representation of the integer.
# This method is crucial for performance given the potentially large size of N.
# If running on an older Python version without `bit_count`, a manual implementation
# using bitwise operations would be needed, but it would likely be too slow.
# The problem statement suggests Python, likely implying an environment where this is efficient.
# Check if the bit_count method exists. This provides compatibility check and robustness.
if hasattr(N, 'bit_count'):
count = N.bit_count()
else:
# Provide an error message or warning if bit_count is not available.
# Depending on the contest environment, one might need to implement a manual
# bit counting loop here, but be aware of potential Time Limit Exceeded issues.
print("Error: int.bit_count() method not found. Requires Python 3.10+.", file=sys.stderr)
# As a fallback for demonstration, though likely too slow:
# count = 0
# temp_N = N
# while temp_N > 0:
# if temp_N & 1:
# count += 1
# temp_N >>= 1
# print("Warning: Using potentially slow manual bit counting.", file=sys.stderr)
sys.exit(1) # Exit if the efficient method is not available.
# Define the modulus as specified in the problem statement.
MOD = 1004535809
# The final answer is the population count modulo MOD.
# The maximum possible population count is the number of bits in N,
# which for N <= 10^1000000 is approximately 3.32 million.
# This value is significantly smaller than MOD (approx. 1 billion).
# So, the modulo operation typically doesn't change the result unless count is 0.
# However, we must apply the modulo as requested.
result = count % MOD
# Print the final result to standard output.
print(result)
# Standard boilerplate for running the solve function when the script is executed.
if __name__ == '__main__':
solve()
qwewe