結果
問題 |
No.381 名声値を稼ごう Extra
|
ユーザー |
![]() |
提出日時 | 2025-05-14 12:58:07 |
言語 | PyPy3 (7.3.15) |
結果 |
RE
|
実行時間 | - |
コード長 | 3,313 bytes |
コンパイル時間 | 201 ms |
コンパイル使用メモリ | 82,884 KB |
実行使用メモリ | 57,832 KB |
最終ジャッジ日時 | 2025-05-14 12:59:21 |
合計ジャッジ時間 | 671 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 1 RE * 1 |
ソースコード
import sys # Set a higher recursion depth limit if needed, although it's unlikely # to be necessary for int.bit_count() which should be iterative. # sys.setrecursionlimit(2000000) def solve(): """ Solves the problem: Reads a large integer N, calculates its population count (number of set bits), and prints the result modulo 1004535809. """ # Read the input value N as a string from standard input. # .strip() removes any leading/trailing whitespace like newline characters. N_str = sys.stdin.readline().strip() # Convert the input string to an integer. Python's built-in `int` type # supports arbitrary precision integers, so it can handle N up to 10^1000000. try: N = int(N_str) except ValueError: # Basic error handling for invalid input format. print("Invalid input: Not a valid integer string.", file=sys.stderr) sys.exit(1) # Exit if input is not valid # Basic check for the constraint N >= 1. if N < 1: print("Invalid input: N must be at least 1.", file=sys.stderr) sys.exit(1) # Calculate the population count (number of set bits) of N. # The `int.bit_count()` method is available in Python 3.10+ and is highly efficient. # It directly counts the number of '1's in the binary representation of the integer. # This method is crucial for performance given the potentially large size of N. # If running on an older Python version without `bit_count`, a manual implementation # using bitwise operations would be needed, but it would likely be too slow. # The problem statement suggests Python, likely implying an environment where this is efficient. # Check if the bit_count method exists. This provides compatibility check and robustness. if hasattr(N, 'bit_count'): count = N.bit_count() else: # Provide an error message or warning if bit_count is not available. # Depending on the contest environment, one might need to implement a manual # bit counting loop here, but be aware of potential Time Limit Exceeded issues. print("Error: int.bit_count() method not found. Requires Python 3.10+.", file=sys.stderr) # As a fallback for demonstration, though likely too slow: # count = 0 # temp_N = N # while temp_N > 0: # if temp_N & 1: # count += 1 # temp_N >>= 1 # print("Warning: Using potentially slow manual bit counting.", file=sys.stderr) sys.exit(1) # Exit if the efficient method is not available. # Define the modulus as specified in the problem statement. MOD = 1004535809 # The final answer is the population count modulo MOD. # The maximum possible population count is the number of bits in N, # which for N <= 10^1000000 is approximately 3.32 million. # This value is significantly smaller than MOD (approx. 1 billion). # So, the modulo operation typically doesn't change the result unless count is 0. # However, we must apply the modulo as requested. result = count % MOD # Print the final result to standard output. print(result) # Standard boilerplate for running the solve function when the script is executed. if __name__ == '__main__': solve()