結果
| 問題 | No.2270 T0空間 |
| コンテスト | |
| ユーザー |
qwewe
|
| 提出日時 | 2025-05-14 12:59:22 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 122 ms / 2,000 ms |
| コード長 | 7,098 bytes |
| コンパイル時間 | 1,044 ms |
| コンパイル使用メモリ | 91,280 KB |
| 実行使用メモリ | 7,844 KB |
| 最終ジャッジ日時 | 2025-05-14 13:00:34 |
| 合計ジャッジ時間 | 4,771 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 22 |
ソースコード
#include <iostream>
#include <vector>
#include <string>
#include <algorithm> // for std::sort
#include <utility> // for std::pair and std::move
// Use unsigned long long for 64-bit integers to store segments of column data.
// This allows packing 64 bits of column data into a single integer.
using ull = unsigned long long;
// Fast I/O setup function to potentially speed up input/output operations.
void fast_io() {
// Disable synchronization between C++ standard streams and C stdio library.
// This can significantly speed up cin/cout operations.
std::ios_base::sync_with_stdio(false);
// Untie cin from cout. By default, cin flushes cout before reading.
// Untying them removes this overhead.
std::cin.tie(NULL);
}
int main() {
// Apply fast I/O settings.
fast_io();
int N; // Length of the binary strings. Also the number of columns to consider.
std::cin >> N;
int M; // Number of binary strings in the set S. Also the length of each column.
std::cin >> M;
// Handle the edge case where N=1.
// The condition involves pairs of distinct indices n0, n1 <= N.
// If N=1, the only index is 1. There are no pairs of distinct indices.
// Therefore, the condition is vacuously true.
if (N <= 1) {
std::cout << "Yes\n";
return 0;
}
// Calculate the number of 64-bit unsigned long long integers required to store M bits.
// Each column has M bits (one bit from each string). We represent each column's data
// as a vector of ull integers. W is the size of this vector.
// This is equivalent to ceil(M / 64.0). Using integer division: (M + 64 - 1) / 64
int W = (M + 63) / 64;
// Declare a vector of vectors to store the column data.
// `columns[j]` will store the data for the column corresponding to the (j+1)-th character from the right.
// It's a vector of N elements, where each element is a vector of W unsigned long longs, initialized to 0.
std::vector<std::vector<ull>> columns(N, std::vector<ull>(W, 0ULL));
// Create a string buffer `s_m` to read input strings.
std::string s_m;
// Reserve capacity for the string based on N. This is an optimization to potentially
// avoid memory reallocations if N is large, as each string will have length N.
// We check N > 0, which is true since we handled N <= 1 already.
s_m.reserve(N);
// Read M strings one by one.
for (int m = 0; m < M; ++m) {
std::cin >> s_m;
// The problem constraints guarantee that the input string `s_m` has length N.
// Iterate through each character of the string `s_m`.
for (int k = 0; k < N; ++k) {
// `k` is the 0-based index from the left of the string `s_m`.
// The character `s_m[k]` corresponds to the (N-k)-th character counting from the right (1-based).
// We need to map this character to its corresponding column index `j`.
// We use 0-based column indices: `j` ranges from 0 to N-1.
// Column `j` represents the data for the (j+1)-th character from the right.
// The relationship is: (j+1) = N-k => j = N-k-1.
int j = N - 1 - k;
// If the character is '1', we need to set the corresponding bit in the column vector `columns[j]`.
if (s_m[k] == '1') {
// The m-th string (0-indexed) contributes the m-th bit to this column.
// We need to determine which 64-bit integer block `p` within `columns[j]` this bit belongs to.
int p = m / 64; // Integer division gives the block index.
// We also need the specific bit position `bit_idx` (0-63) within that block `columns[j][p]`.
int bit_idx = m % 64; // Modulo operation gives the bit index within the block.
// Set the bit using bitwise OR operation.
// `1ULL` ensures the literal 1 is treated as an unsigned long long type. This is crucial
// especially for shifts >= 32 bits on systems where long might be 32 bits.
columns[j][p] |= (1ULL << bit_idx);
}
// If `s_m[k]` is '0', the corresponding bit should remain 0. Since we initialized `columns` with 0s,
// no action is required for '0' characters.
}
}
// To check for identical columns efficiently, we sort the columns.
// We create pairs of (column_vector, original_column_index) to keep track of the original position if needed,
// but primarily to facilitate sorting based on the vector data.
std::vector<std::pair<std::vector<ull>, int>> indexed_columns(N);
for (int j = 0; j < N; ++j) {
// Use `std::move` to transfer ownership of the `columns[j]` vector data to the pair.
// This is more efficient than copying, especially for large vectors (large W).
// After the move, `columns[j]` is left in a valid but unspecified state.
indexed_columns[j] = {std::move(columns[j]), j};
}
// The original `columns` vector now contains moved-from vectors. It's no longer needed.
// Clearing it can potentially release memory earlier. `shrink_to_fit` requests deallocation.
columns.clear();
columns.shrink_to_fit();
// Sort the `indexed_columns` vector. The `std::sort` algorithm uses `operator<` for pairs by default.
// Pair comparison first compares the `first` elements. For `std::vector`, `operator<` performs
// lexicographical comparison, which compares the column data bit patterns correctly.
std::sort(indexed_columns.begin(), indexed_columns.end());
// After sorting, identical columns will be adjacent in the `indexed_columns` vector.
// We iterate through the sorted list and check adjacent pairs.
bool found_duplicate = false;
for (int i = 0; i < N - 1; ++i) {
// Compare the `first` element (the column vector) of adjacent pairs.
// `std::vector::operator==` compares vectors element by element.
if (indexed_columns[i].first == indexed_columns[i+1].first) {
// If two adjacent vectors are identical, it means we found two columns with the same bit pattern.
// Since N > 1 and we included all N columns, these identical vectors must correspond to
// distinct original column positions (indices j). This violates the problem's condition.
found_duplicate = true;
// Once a duplicate pair is found, we know the answer is "No", so we can stop checking.
break;
}
}
// Output the final result based on whether any duplicate columns were found.
if (found_duplicate) {
// If duplicates were found, the set S is not a "good bit string set".
std::cout << "No\n";
} else {
// If the loop finished without finding any duplicates, all columns are distinct.
// The set S satisfies the condition and is a "good bit string set".
std::cout << "Yes\n";
}
return 0; // Indicate successful execution.
}
qwewe