結果
問題 |
No.1632 Sorting Integers (GCD of M)
|
ユーザー |
![]() |
提出日時 | 2025-05-14 13:01:37 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 6,335 bytes |
コンパイル時間 | 1,010 ms |
コンパイル使用メモリ | 75,448 KB |
実行使用メモリ | 7,848 KB |
最終ジャッジ日時 | 2025-05-14 13:03:56 |
合計ジャッジ時間 | 2,747 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 4 |
other | AC * 49 WA * 10 |
ソースコード
#include <iostream> #include <vector> #include <numeric> #include <utility> // Required for std::swap in gcd function // Function to compute (base^exp) % mod using binary exponentiation (also known as exponentiation by squaring) // This is efficient for large exponents. long long power(long long base, long long exp) { long long res = 1; long long P = 1000000007; // Define the modulus P base %= P; // Reduce base modulo P initially while (exp > 0) { // If exp is odd, multiply base with result if (exp % 2 == 1) res = (res * base) % P; // Square the base and halve the exponent base = (base * base) % P; exp /= 2; } return res; } // Function to compute modular multiplicative inverse using Fermat's Little Theorem // This theorem states that if P is a prime number, then for any integer a not divisible by P, // a^(P-1) === 1 (mod P). Therefore, a^(P-2) === a^(-1) (mod P). // This works because P = 10^9 + 7 is a prime number. long long modInverse(long long n) { long long P = 1000000007; // Define the modulus P // P - 2 = 1000000005 is the exponent needed for modular inverse return power(n, P - 2); } // Standard Euclidean algorithm to compute the Greatest Common Divisor (GCD) of two numbers. long long gcd(long long a, long long b) { // The algorithm relies on the property gcd(a, b) = gcd(b, a % b) while (b) { // Loop continues as long as b is non-zero a %= b; // Replace a with a mod b std::swap(a, b); // Swap a and b } // When b becomes 0, a holds the GCD return a; } int main() { // Use faster I/O operations by disabling synchronization with C stdio and uncoupling cin/cout. std::ios_base::sync_with_stdio(false); std::cin.tie(NULL); long long N; // Total number of digits std::cin >> N; // Store counts of digits 1 through 9. Index 0 is unused. std::vector<long long> c(10); // Store the distinct digits that are present (have count > 0) std::vector<int> present_digits; int distinct_digit_count = 0; // Counter for the number of distinct digits present int the_digit = -1; // Variable to store the digit value if only one type is present // Read the counts c_1 through c_9 for (int i = 1; i <= 9; ++i) { std::cin >> c[i]; // If digit i has a count greater than 0, record it if (c[i] > 0) { present_digits.push_back(i); distinct_digit_count++; // Keep track of the digit. If distinct_digit_count ends up being 1, this holds the value. the_digit = i; } } // Define the modulus for output long long P = 1000000007; // Check if there is only one distinct digit type present if (distinct_digit_count == 1) { // Case: Only one type of digit `i` is present. // The only possible number M is the one formed by repeating digit `i`, N times. // The GCD is M itself. long long i = the_digit; // Calculate M = i * (1 + 10 + ... + 10^(N-1)) mod P // The sum is a geometric series sum: (10^N - 1) / (10 - 1) = (10^N - 1) / 9. // So M = i * (10^N - 1) / 9. // Calculate M modulo P. Use modular arithmetic properties. long long term1 = i % P; // The digit i modulo P long long term2_pow10N = power(10, N); // 10^N mod P // Calculate (10^N - 1) mod P. Add P before taking modulo to handle potential negative result from subtraction. long long term2 = (term2_pow10N - 1 + P) % P; long long term3_inv9 = modInverse(9); // Modular inverse of 9 modulo P // Compute (term1 * term2 * term3) % P using modular multiplication long long result = (term1 * term2) % P; result = (result * term3_inv9) % P; std::cout << result << std::endl; } else { // Case: Multiple types of digits are present. // Compute the GCD `g` of all present digits values. long long current_gcd = 0; for (int digit : present_digits) { if (current_gcd == 0) { // Initialize GCD with the first present digit encountered current_gcd = digit; } else { // Update GCD by taking GCD with the next present digit // Cast digit to long long just to match the function signature, although digits 1-9 fit in int. current_gcd = gcd(current_gcd, (long long)digit); } } long long S_dig = 0; // Variable to store the sum of all digits (considering their values) // Calculate the total sum of digits: Sum(i * c_i) for i=1..9 for (int i = 1; i <= 9; ++i) { // Use long long for the product i * c_i and the total sum S_dig to prevent potential overflow. // Max S_dig can be 9 * N <= 9 * 10^9, which fits within a 64-bit long long. S_dig += (long long)i * c[i]; } long long g = current_gcd; // The GCD of the values of present digits // The problem reduces to considering digits i/g. Let S'_dig be the sum of these reduced digits. // S'_dig = Sum (i/g * c_i) = (Sum i*c_i) / g = S_dig / g. // We need to check divisibility of S'_dig by 3 and 9. // Ensure g is not 0 before division. Since digits are 1-9, g must be >= 1. long long S_prime_dig = S_dig / g; int k = 0; // The exponent for the factor 3 in the final GCD // Determine the value of k based on divisibility properties of S_prime_dig by 3 and 9. if (S_prime_dig % 3 == 0) { // Check if S'_dig is divisible by 3 if (S_prime_dig % 9 == 0) { // Check if S'_dig is divisible by 9 k = 2; // If divisible by 9, power of 3 is 2. } else { // Divisible by 3 but not by 9 k = 1; // Power of 3 is 1. } } else { // Not divisible by 3 k = 0; // Power of 3 is 0. } // The final GCD G is g * 3^k. Calculate this value modulo P. long long factor3k = power(3, k); // Calculate 3^k mod P // Calculate G = (g mod P * 3^k mod P) mod P long long G = (g % P * factor3k) % P; std::cout << G << std::endl; } return 0; }