結果

問題 No.1632 Sorting Integers (GCD of M)
ユーザー qwewe
提出日時 2025-05-14 13:01:37
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
WA  
実行時間 -
コード長 6,335 bytes
コンパイル時間 1,010 ms
コンパイル使用メモリ 75,448 KB
実行使用メモリ 7,848 KB
最終ジャッジ日時 2025-05-14 13:03:56
合計ジャッジ時間 2,747 ms
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 4
other AC * 49 WA * 10
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <iostream>
#include <vector>
#include <numeric>
#include <utility> // Required for std::swap in gcd function

// Function to compute (base^exp) % mod using binary exponentiation (also known as exponentiation by squaring)
// This is efficient for large exponents.
long long power(long long base, long long exp) {
    long long res = 1;
    long long P = 1000000007; // Define the modulus P
    base %= P; // Reduce base modulo P initially
    while (exp > 0) {
        // If exp is odd, multiply base with result
        if (exp % 2 == 1) res = (res * base) % P;
        // Square the base and halve the exponent
        base = (base * base) % P;
        exp /= 2;
    }
    return res;
}

// Function to compute modular multiplicative inverse using Fermat's Little Theorem
// This theorem states that if P is a prime number, then for any integer a not divisible by P,
// a^(P-1) === 1 (mod P). Therefore, a^(P-2) === a^(-1) (mod P).
// This works because P = 10^9 + 7 is a prime number.
long long modInverse(long long n) {
    long long P = 1000000007; // Define the modulus P
    // P - 2 = 1000000005 is the exponent needed for modular inverse
    return power(n, P - 2);
}

// Standard Euclidean algorithm to compute the Greatest Common Divisor (GCD) of two numbers.
long long gcd(long long a, long long b) {
    // The algorithm relies on the property gcd(a, b) = gcd(b, a % b)
    while (b) { // Loop continues as long as b is non-zero
        a %= b; // Replace a with a mod b
        std::swap(a, b); // Swap a and b
    }
    // When b becomes 0, a holds the GCD
    return a;
}

int main() {
    // Use faster I/O operations by disabling synchronization with C stdio and uncoupling cin/cout.
    std::ios_base::sync_with_stdio(false);
    std::cin.tie(NULL);

    long long N; // Total number of digits
    std::cin >> N;
    
    // Store counts of digits 1 through 9. Index 0 is unused.
    std::vector<long long> c(10); 
    // Store the distinct digits that are present (have count > 0)
    std::vector<int> present_digits; 
    int distinct_digit_count = 0; // Counter for the number of distinct digits present
    int the_digit = -1; // Variable to store the digit value if only one type is present

    // Read the counts c_1 through c_9
    for (int i = 1; i <= 9; ++i) {
        std::cin >> c[i];
        // If digit i has a count greater than 0, record it
        if (c[i] > 0) {
            present_digits.push_back(i);
            distinct_digit_count++;
            // Keep track of the digit. If distinct_digit_count ends up being 1, this holds the value.
            the_digit = i; 
        }
    }

    // Define the modulus for output
    long long P = 1000000007;

    // Check if there is only one distinct digit type present
    if (distinct_digit_count == 1) {
        // Case: Only one type of digit `i` is present.
        // The only possible number M is the one formed by repeating digit `i`, N times.
        // The GCD is M itself.
        long long i = the_digit;
        
        // Calculate M = i * (1 + 10 + ... + 10^(N-1)) mod P
        // The sum is a geometric series sum: (10^N - 1) / (10 - 1) = (10^N - 1) / 9.
        // So M = i * (10^N - 1) / 9.
        
        // Calculate M modulo P. Use modular arithmetic properties.
        long long term1 = i % P; // The digit i modulo P
        long long term2_pow10N = power(10, N); // 10^N mod P
        // Calculate (10^N - 1) mod P. Add P before taking modulo to handle potential negative result from subtraction.
        long long term2 = (term2_pow10N - 1 + P) % P; 
        long long term3_inv9 = modInverse(9); // Modular inverse of 9 modulo P
        
        // Compute (term1 * term2 * term3) % P using modular multiplication
        long long result = (term1 * term2) % P;
        result = (result * term3_inv9) % P;
        
        std::cout << result << std::endl;

    } else {
        // Case: Multiple types of digits are present.
        
        // Compute the GCD `g` of all present digits values.
        long long current_gcd = 0; 
        for (int digit : present_digits) {
            if (current_gcd == 0) {
                // Initialize GCD with the first present digit encountered
                current_gcd = digit; 
            } else {
                // Update GCD by taking GCD with the next present digit
                // Cast digit to long long just to match the function signature, although digits 1-9 fit in int.
                current_gcd = gcd(current_gcd, (long long)digit); 
            }
        }
        
        long long S_dig = 0; // Variable to store the sum of all digits (considering their values)
        // Calculate the total sum of digits: Sum(i * c_i) for i=1..9
        for (int i = 1; i <= 9; ++i) {
             // Use long long for the product i * c_i and the total sum S_dig to prevent potential overflow.
             // Max S_dig can be 9 * N <= 9 * 10^9, which fits within a 64-bit long long.
             S_dig += (long long)i * c[i];
        }

        long long g = current_gcd; // The GCD of the values of present digits
        // The problem reduces to considering digits i/g. Let S'_dig be the sum of these reduced digits.
        // S'_dig = Sum (i/g * c_i) = (Sum i*c_i) / g = S_dig / g.
        // We need to check divisibility of S'_dig by 3 and 9.
        // Ensure g is not 0 before division. Since digits are 1-9, g must be >= 1.
        long long S_prime_dig = S_dig / g; 

        int k = 0; // The exponent for the factor 3 in the final GCD
        // Determine the value of k based on divisibility properties of S_prime_dig by 3 and 9.
        if (S_prime_dig % 3 == 0) { // Check if S'_dig is divisible by 3
            if (S_prime_dig % 9 == 0) { // Check if S'_dig is divisible by 9
                k = 2; // If divisible by 9, power of 3 is 2.
            } else { // Divisible by 3 but not by 9
                k = 1; // Power of 3 is 1.
            }
        } else { // Not divisible by 3
            k = 0; // Power of 3 is 0.
        }

        // The final GCD G is g * 3^k. Calculate this value modulo P.
        long long factor3k = power(3, k); // Calculate 3^k mod P
        // Calculate G = (g mod P * 3^k mod P) mod P
        long long G = (g % P * factor3k) % P; 
        
        std::cout << G << std::endl;
    }

    return 0;
}
0