結果
問題 |
No.576 E869120 and Rings
|
ユーザー |
![]() |
提出日時 | 2025-05-14 13:14:05 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 1,073 ms / 1,500 ms |
コード長 | 6,698 bytes |
コンパイル時間 | 713 ms |
コンパイル使用メモリ | 97,504 KB |
実行使用メモリ | 16,552 KB |
最終ジャッジ日時 | 2025-05-14 13:15:11 |
合計ジャッジ時間 | 18,355 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 27 |
ソースコード
#include <iostream> #include <vector> #include <string> #include <deque> #include <iomanip> #include <algorithm> // Required for std::max using namespace std; int N; // Number of gems int K; // Minimum length of the segment vector<int> b; // Doubled sequence of gems (0 for red, 1 for blue), 0-indexed vector<double> P; // Prefix sums vector used in the check function /** * @brief Check function for binary search. Determines if there exists a contiguous segment * of gems on the ring with length L, where K <= L <= N, such that the ratio of blue gems * in the segment is at least X. * * The problem asks to maximize B/L, where B is the number of blue gems and L is the length. * This function checks if max(B/L) >= X is possible. * This is equivalent to checking if there exists a segment i..j such that B >= X*L. * Let b_k be 1 if gem k is blue, 0 if red. We need sum(b_k for k=i..j) >= X * (j-i+1). * Rewriting, sum(b_k - X for k=i..j) >= 0. * Let c_k = b_k - X. We need sum(c_k for k=i..j) >= 0. * Using prefix sums P, where P[k] = sum(c_p for p=0..k-1), this sum is P[j+1] - P[i]. * So we need to check if there exists a pair (i, j) satisfying constraints such that P[j+1] >= P[i]. * * Constraints on segment i..j: * The segment starts at index i and ends at index j in the doubled sequence b (0-indexed). * The start index i must correspond to a position in the original sequence: 0 <= i <= N-1. * The segment must be contiguous on the ring, meaning j < i+N. * The length L = j-i+1 must satisfy K <= L <= N. * These constraints imply: * 0 <= i <= N-1 * i + K - 1 <= j <= i + N - 1 * Which implies overall range for j is K-1 <= j <= 2N-2. * * For a fixed j, the valid range for start index i is: * max(0, j - N + 1) <= i <= min(N-1, j - K + 1) * Let this range be [L_j, R_j]. We need to check if P[j+1] >= min(P[i] for i in [L_j, R_j]). * This minimum is efficiently found using a sliding window minimum approach with a deque. * * @param X The ratio value to check. * @return True if a segment with ratio >= X exists, False otherwise. */ bool check(double X) { // Calculate prefix sums P based on the transformed values c_k = b[k] - X. // P[k] stores the sum of c_p for p from 0 to k-1. P[0] = 0. P[0] = 0.0; for (int k = 0; k < 2 * N; ++k) { P[k + 1] = P[k] + (double)(b[k]) - X; } // Deque stores indices `i` which are candidates for the minimum P[i] in the sliding window. // Indices in the deque are strictly increasing. // P values corresponding to indices in the deque maintain a specific property required for the algorithm. deque<int> dq; // Iterate through all possible segment end points j. // j ranges from K-1 to 2N-2. for (int j = K - 1; j < 2 * N - 1; ++j) { // Consider the index i_new = j - K + 1. // This is the starting index 'i' for a segment ending at 'j' with minimum required length K. // This index is a potential candidate to be added to our sliding window minimum structure. // We only consider indices i_new that are valid start positions (0 <= i_new <= N-1). int i_new = j - K + 1; if (i_new >= 0 && i_new <= N - 1) { // Maintain deque property for sliding window minimum: // Remove indices from the back of deque if their P value is >= P[i_new]. // This ensures that dq.front() will hold the index with the minimum P value in the window. while (!dq.empty() && P[dq.back()] >= P[i_new]) { dq.pop_back(); } dq.push_back(i_new); } // The valid range for start index i for a segment ending at j is [L_j, R_j]. // The lower bound L_j = max(0, j - N + 1) ensures the segment length L <= N. // Remove indices from the front of the deque that are smaller than L_j, // as they are no longer within the sliding window corresponding to j. int L_j = max(0, j - N + 1); while (!dq.empty() && dq.front() < L_j) { dq.pop_front(); } // If the deque is not empty after adjustments, dq.front() holds the index `i_min_idx` // such that P[i_min_idx] is the minimum P[i] value for all valid `i` in the current window for `j`. // Check if P[j+1] >= P[i_min_idx]. This is equivalent to checking if sum(c_k for k=i..j) >= 0. if (!dq.empty()) { int i_min_idx = dq.front(); if (P[j + 1] >= P[i_min_idx]) { return true; // Found a valid segment meeting the criteria } } } // If the loop completes without finding any segment satisfying the condition, return false. return false; } int main() { // Use faster I/O operations ios_base::sync_with_stdio(false); cin.tie(NULL); // Read input: N gems, minimum segment length K cin >> N >> K; string a_str; // String representing gem colors ('1' for blue, '0' for red) cin >> a_str; // Create the doubled sequence `b` to handle circularity easily. // The sequence b has length 2N. b[0..N-1] is the original sequence, b[N..2N-1] is a copy. b.resize(2 * N); for (int i = 0; i < N; ++i) { b[i] = a_str[i] - '0'; // Convert char '0'/'1' to int 0/1 b[i + N] = b[i]; } // Pre-allocate space for prefix sums vector P to avoid reallocation within the check function. // Size 2N+1 is needed for indices 0 to 2N. P.resize(2 * N + 1); // Binary search for the maximum possible ratio X. // The ratio is between 0.0 and 1.0. double low = 0.0, high = 1.0; double ans = 0.0; // Stores the best ratio found so far that is achievable // Perform a fixed number of iterations (e.g., 100) for binary search. // This is sufficient to achieve the required precision (10^-6). // 2^-100 is much smaller than 10^-6. for(int iter = 0; iter < 100; ++iter) { // Calculate midpoint. Using this form avoids potential floating point issues vs (low+high)/2 double mid = low + (high - low) / 2.0; if (check(mid)) { // If a segment with average ratio >= mid exists, then `mid` is a possible answer. // We try to find an even higher ratio, so we update `low = mid`. ans = mid; low = mid; } else { // If no segment has average ratio >= mid, the maximum possible ratio must be less than mid. // We search in the lower half, so update `high = mid`. high = mid; } } // Output the maximum possible ratio found with high precision. cout << fixed << setprecision(17) << ans << endl; return 0; }