結果
| 問題 |
No.576 E869120 and Rings
|
| コンテスト | |
| ユーザー |
qwewe
|
| 提出日時 | 2025-05-14 13:14:05 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 1,073 ms / 1,500 ms |
| コード長 | 6,698 bytes |
| コンパイル時間 | 713 ms |
| コンパイル使用メモリ | 97,504 KB |
| 実行使用メモリ | 16,552 KB |
| 最終ジャッジ日時 | 2025-05-14 13:15:11 |
| 合計ジャッジ時間 | 18,355 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 27 |
ソースコード
#include <iostream>
#include <vector>
#include <string>
#include <deque>
#include <iomanip>
#include <algorithm> // Required for std::max
using namespace std;
int N; // Number of gems
int K; // Minimum length of the segment
vector<int> b; // Doubled sequence of gems (0 for red, 1 for blue), 0-indexed
vector<double> P; // Prefix sums vector used in the check function
/**
* @brief Check function for binary search. Determines if there exists a contiguous segment
* of gems on the ring with length L, where K <= L <= N, such that the ratio of blue gems
* in the segment is at least X.
*
* The problem asks to maximize B/L, where B is the number of blue gems and L is the length.
* This function checks if max(B/L) >= X is possible.
* This is equivalent to checking if there exists a segment i..j such that B >= X*L.
* Let b_k be 1 if gem k is blue, 0 if red. We need sum(b_k for k=i..j) >= X * (j-i+1).
* Rewriting, sum(b_k - X for k=i..j) >= 0.
* Let c_k = b_k - X. We need sum(c_k for k=i..j) >= 0.
* Using prefix sums P, where P[k] = sum(c_p for p=0..k-1), this sum is P[j+1] - P[i].
* So we need to check if there exists a pair (i, j) satisfying constraints such that P[j+1] >= P[i].
*
* Constraints on segment i..j:
* The segment starts at index i and ends at index j in the doubled sequence b (0-indexed).
* The start index i must correspond to a position in the original sequence: 0 <= i <= N-1.
* The segment must be contiguous on the ring, meaning j < i+N.
* The length L = j-i+1 must satisfy K <= L <= N.
* These constraints imply:
* 0 <= i <= N-1
* i + K - 1 <= j <= i + N - 1
* Which implies overall range for j is K-1 <= j <= 2N-2.
*
* For a fixed j, the valid range for start index i is:
* max(0, j - N + 1) <= i <= min(N-1, j - K + 1)
* Let this range be [L_j, R_j]. We need to check if P[j+1] >= min(P[i] for i in [L_j, R_j]).
* This minimum is efficiently found using a sliding window minimum approach with a deque.
*
* @param X The ratio value to check.
* @return True if a segment with ratio >= X exists, False otherwise.
*/
bool check(double X) {
// Calculate prefix sums P based on the transformed values c_k = b[k] - X.
// P[k] stores the sum of c_p for p from 0 to k-1. P[0] = 0.
P[0] = 0.0;
for (int k = 0; k < 2 * N; ++k) {
P[k + 1] = P[k] + (double)(b[k]) - X;
}
// Deque stores indices `i` which are candidates for the minimum P[i] in the sliding window.
// Indices in the deque are strictly increasing.
// P values corresponding to indices in the deque maintain a specific property required for the algorithm.
deque<int> dq;
// Iterate through all possible segment end points j.
// j ranges from K-1 to 2N-2.
for (int j = K - 1; j < 2 * N - 1; ++j) {
// Consider the index i_new = j - K + 1.
// This is the starting index 'i' for a segment ending at 'j' with minimum required length K.
// This index is a potential candidate to be added to our sliding window minimum structure.
// We only consider indices i_new that are valid start positions (0 <= i_new <= N-1).
int i_new = j - K + 1;
if (i_new >= 0 && i_new <= N - 1) {
// Maintain deque property for sliding window minimum:
// Remove indices from the back of deque if their P value is >= P[i_new].
// This ensures that dq.front() will hold the index with the minimum P value in the window.
while (!dq.empty() && P[dq.back()] >= P[i_new]) {
dq.pop_back();
}
dq.push_back(i_new);
}
// The valid range for start index i for a segment ending at j is [L_j, R_j].
// The lower bound L_j = max(0, j - N + 1) ensures the segment length L <= N.
// Remove indices from the front of the deque that are smaller than L_j,
// as they are no longer within the sliding window corresponding to j.
int L_j = max(0, j - N + 1);
while (!dq.empty() && dq.front() < L_j) {
dq.pop_front();
}
// If the deque is not empty after adjustments, dq.front() holds the index `i_min_idx`
// such that P[i_min_idx] is the minimum P[i] value for all valid `i` in the current window for `j`.
// Check if P[j+1] >= P[i_min_idx]. This is equivalent to checking if sum(c_k for k=i..j) >= 0.
if (!dq.empty()) {
int i_min_idx = dq.front();
if (P[j + 1] >= P[i_min_idx]) {
return true; // Found a valid segment meeting the criteria
}
}
}
// If the loop completes without finding any segment satisfying the condition, return false.
return false;
}
int main() {
// Use faster I/O operations
ios_base::sync_with_stdio(false);
cin.tie(NULL);
// Read input: N gems, minimum segment length K
cin >> N >> K;
string a_str; // String representing gem colors ('1' for blue, '0' for red)
cin >> a_str;
// Create the doubled sequence `b` to handle circularity easily.
// The sequence b has length 2N. b[0..N-1] is the original sequence, b[N..2N-1] is a copy.
b.resize(2 * N);
for (int i = 0; i < N; ++i) {
b[i] = a_str[i] - '0'; // Convert char '0'/'1' to int 0/1
b[i + N] = b[i];
}
// Pre-allocate space for prefix sums vector P to avoid reallocation within the check function.
// Size 2N+1 is needed for indices 0 to 2N.
P.resize(2 * N + 1);
// Binary search for the maximum possible ratio X.
// The ratio is between 0.0 and 1.0.
double low = 0.0, high = 1.0;
double ans = 0.0; // Stores the best ratio found so far that is achievable
// Perform a fixed number of iterations (e.g., 100) for binary search.
// This is sufficient to achieve the required precision (10^-6).
// 2^-100 is much smaller than 10^-6.
for(int iter = 0; iter < 100; ++iter) {
// Calculate midpoint. Using this form avoids potential floating point issues vs (low+high)/2
double mid = low + (high - low) / 2.0;
if (check(mid)) {
// If a segment with average ratio >= mid exists, then `mid` is a possible answer.
// We try to find an even higher ratio, so we update `low = mid`.
ans = mid;
low = mid;
} else {
// If no segment has average ratio >= mid, the maximum possible ratio must be less than mid.
// We search in the lower half, so update `high = mid`.
high = mid;
}
}
// Output the maximum possible ratio found with high precision.
cout << fixed << setprecision(17) << ans << endl;
return 0;
}
qwewe