結果
| 問題 | 
                            No.299 蟻本が読めない
                             | 
                    
| コンテスト | |
| ユーザー | 
                             qwewe
                         | 
                    
| 提出日時 | 2025-05-14 13:14:59 | 
| 言語 | C++17  (gcc 13.3.0 + boost 1.87.0)  | 
                    
| 結果 | 
                             
                                AC
                                 
                             
                            
                         | 
                    
| 実行時間 | 2 ms / 1,000 ms | 
| コード長 | 2,487 bytes | 
| コンパイル時間 | 645 ms | 
| コンパイル使用メモリ | 65,408 KB | 
| 実行使用メモリ | 6,272 KB | 
| 最終ジャッジ日時 | 2025-05-14 13:15:54 | 
| 合計ジャッジ時間 | 951 ms | 
| 
                            ジャッジサーバーID (参考情報)  | 
                        judge1 / judge4 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| other | AC * 4 | 
ソースコード
#include <iostream> // Include the iostream library for input and output operations
int main() {
    // Declare a variable 'n' of type long long.
    // 'long long' is a 64-bit integer type in C++, necessary because the input N 
    // can be as large as 10^10, which exceeds the capacity of a standard 32-bit integer (int).
    long long n;
    
    // Read the integer value N from standard input (usually the console).
    std::cin >> n;
    // Calculate the predicted number of pages for the N-th edition.
    // The problem states that the first edition (N=1) has 316 pages and the second edition (N=2) has 368 pages.
    // It hypothesizes that the page count follows an arithmetic progression.
    // An arithmetic progression is a sequence where the difference between consecutive terms is constant.
    // Let P(N) be the number of pages in the N-th edition.
    // The first term is P(1) = 316.
    // The second term is P(2) = 368.
    // The common difference 'd' is the difference between consecutive terms:
    // d = P(2) - P(1) = 368 - 316 = 52.
    //
    // The formula for the N-th term of an arithmetic progression is:
    // P(N) = P(1) + (N - 1) * d
    // Substituting the values we have:
    // P(N) = 316 + (N - 1) * 52
    //
    // This formula can be simplified algebraically:
    // P(N) = 316 + 52 * N - 52 * 1
    // P(N) = 316 + 52*N - 52
    // P(N) = 52*N + (316 - 52)
    // P(N) = 52*N + 264
    //
    // We use this simplified formula for the calculation.
    // The literals 52LL and 264LL use the 'LL' suffix to specify that they are of type long long.
    // This ensures that all calculations, especially the multiplication 52LL * n, are performed 
    // using 64-bit arithmetic. This is important to prevent potential integer overflow issues, 
    // as the result of 52 * N can exceed the maximum value of a 32-bit integer even if N itself fits.
    long long result = 52LL * n + 264LL;
    // Print the calculated result to standard output (usually the console).
    std::cout << result;
    // Print a newline character after the result. This is required by the problem statement 
    // ("最後に改行してください。" - Please add a newline at the end.) and is standard practice 
    // in competitive programming to ensure the output format is correct.
    std::cout << std::endl;
    // Return 0 from the main function. In C++, returning 0 from main indicates that 
    // the program executed successfully.
    return 0;
}
            
            
            
        
            
qwewe