結果
| 問題 |
No.2135 C5
|
| コンテスト | |
| ユーザー |
qwewe
|
| 提出日時 | 2025-05-14 13:21:17 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 613 ms / 2,000 ms |
| コード長 | 3,438 bytes |
| コンパイル時間 | 773 ms |
| コンパイル使用メモリ | 77,652 KB |
| 実行使用メモリ | 6,272 KB |
| 最終ジャッジ日時 | 2025-05-14 13:23:42 |
| 合計ジャッジ時間 | 10,031 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 48 |
ソースコード
#include <iostream>
#include <vector>
#include <numeric>
using namespace std;
long long MOD = 998244353;
vector<long long> fact;
vector<long long> invFact;
long long INV2;
long long power(long long base, long long exp) {
long long res = 1;
base %= MOD;
while (exp > 0) {
if (exp % 2 == 1) res = (res * base) % MOD;
base = (base * base) % MOD;
exp /= 2;
}
return res;
}
long long modInverse(long long n) {
return power(n, MOD - 2);
}
void precompute_factorials(int n) {
fact.resize(n + 1);
invFact.resize(n + 1);
fact[0] = 1;
invFact[0] = 1;
for (int i = 1; i <= n; i++) {
fact[i] = (fact[i - 1] * i) % MOD;
invFact[i] = modInverse(fact[i]);
}
INV2 = modInverse(2);
}
long long nCr_mod_p(int n, int r) {
if (r < 0 || r > n) return 0;
return (((fact[n] * invFact[r]) % MOD) * invFact[n - r]) % MOD;
}
int main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
int N, M;
cin >> N >> M;
precompute_factorials(N);
long long M_bar = (long long)N * (N - 1) / 2 - M;
if (M_bar < 0 || M_bar > N) {
cout << 0 << endl;
return 0;
}
// dp[i][j] = number of ways to form a graph on i vertices with j edges,
// where graph is a collection of disjoint paths and cycles C_k (k>=5)
vector<vector<long long>> dp(N + 1, vector<long long>(N + 1, 0));
dp[0][0] = 1;
// f[k][l] = ways to form one component (path or Ck, k>=5) on k specific vertices with l edges
vector<vector<long long>> f(N + 1, vector<long long>(N + 1, 0));
// P1
f[1][0] = 1;
// Paths P_k, k >= 2
for (int k = 2; k <= N; ++k) {
if (k - 1 <= N) { // Edges l = k-1
f[k][k-1] = (fact[k] * INV2) % MOD;
}
}
// Cycles C_k, k >= 5
for (int k = 5; k <= N; ++k) {
if (k <= N) { // Edges l = k
f[k][k] = (fact[k-1] * INV2) % MOD;
}
}
// Special cases for small N where C_k, k>=5 is impossible
// For N=3, C3 would be fact[2]*INV2 = 1. f[3][3] should be 0.
// For N=4, C4 would be fact[3]*INV2 = 3. f[4][4] should be 0.
if (N >=3 && 3 <= N) f[3][3] = 0; // No C3
if (N >=4 && 4 <= N) f[4][4] = 0; // No C4
for (int i = 1; i <= N; ++i) {
for (int j = 0; j <= i; ++j) { // Max edges in such a graph on i vertices is i
for (int k = 1; k <= i; ++k) { // Size of component involving vertex i
// Path component
if (k - 1 <= j) { // l = k-1 edges
long long ways_comp = f[k][k-1];
if (ways_comp > 0) {
long long term = (nCr_mod_p(i - 1, k - 1) * ways_comp) % MOD;
term = (term * dp[i - k][j - (k - 1)]) % MOD;
dp[i][j] = (dp[i][j] + term) % MOD;
}
}
// Cycle component (C_k, k>=5)
if (k <= j) { // l = k edges
long long ways_comp = f[k][k]; // This is already 0 if k<5
if (ways_comp > 0) {
long long term = (nCr_mod_p(i - 1, k - 1) * ways_comp) % MOD;
term = (term * dp[i - k][j - k]) % MOD;
dp[i][j] = (dp[i][j] + term) % MOD;
}
}
}
}
}
cout << dp[N][M_bar] << endl;
return 0;
}
qwewe