結果
問題 |
No.2135 C5
|
ユーザー |
![]() |
提出日時 | 2025-05-14 13:21:17 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 613 ms / 2,000 ms |
コード長 | 3,438 bytes |
コンパイル時間 | 773 ms |
コンパイル使用メモリ | 77,652 KB |
実行使用メモリ | 6,272 KB |
最終ジャッジ日時 | 2025-05-14 13:23:42 |
合計ジャッジ時間 | 10,031 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 4 |
other | AC * 48 |
ソースコード
#include <iostream> #include <vector> #include <numeric> using namespace std; long long MOD = 998244353; vector<long long> fact; vector<long long> invFact; long long INV2; long long power(long long base, long long exp) { long long res = 1; base %= MOD; while (exp > 0) { if (exp % 2 == 1) res = (res * base) % MOD; base = (base * base) % MOD; exp /= 2; } return res; } long long modInverse(long long n) { return power(n, MOD - 2); } void precompute_factorials(int n) { fact.resize(n + 1); invFact.resize(n + 1); fact[0] = 1; invFact[0] = 1; for (int i = 1; i <= n; i++) { fact[i] = (fact[i - 1] * i) % MOD; invFact[i] = modInverse(fact[i]); } INV2 = modInverse(2); } long long nCr_mod_p(int n, int r) { if (r < 0 || r > n) return 0; return (((fact[n] * invFact[r]) % MOD) * invFact[n - r]) % MOD; } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); int N, M; cin >> N >> M; precompute_factorials(N); long long M_bar = (long long)N * (N - 1) / 2 - M; if (M_bar < 0 || M_bar > N) { cout << 0 << endl; return 0; } // dp[i][j] = number of ways to form a graph on i vertices with j edges, // where graph is a collection of disjoint paths and cycles C_k (k>=5) vector<vector<long long>> dp(N + 1, vector<long long>(N + 1, 0)); dp[0][0] = 1; // f[k][l] = ways to form one component (path or Ck, k>=5) on k specific vertices with l edges vector<vector<long long>> f(N + 1, vector<long long>(N + 1, 0)); // P1 f[1][0] = 1; // Paths P_k, k >= 2 for (int k = 2; k <= N; ++k) { if (k - 1 <= N) { // Edges l = k-1 f[k][k-1] = (fact[k] * INV2) % MOD; } } // Cycles C_k, k >= 5 for (int k = 5; k <= N; ++k) { if (k <= N) { // Edges l = k f[k][k] = (fact[k-1] * INV2) % MOD; } } // Special cases for small N where C_k, k>=5 is impossible // For N=3, C3 would be fact[2]*INV2 = 1. f[3][3] should be 0. // For N=4, C4 would be fact[3]*INV2 = 3. f[4][4] should be 0. if (N >=3 && 3 <= N) f[3][3] = 0; // No C3 if (N >=4 && 4 <= N) f[4][4] = 0; // No C4 for (int i = 1; i <= N; ++i) { for (int j = 0; j <= i; ++j) { // Max edges in such a graph on i vertices is i for (int k = 1; k <= i; ++k) { // Size of component involving vertex i // Path component if (k - 1 <= j) { // l = k-1 edges long long ways_comp = f[k][k-1]; if (ways_comp > 0) { long long term = (nCr_mod_p(i - 1, k - 1) * ways_comp) % MOD; term = (term * dp[i - k][j - (k - 1)]) % MOD; dp[i][j] = (dp[i][j] + term) % MOD; } } // Cycle component (C_k, k>=5) if (k <= j) { // l = k edges long long ways_comp = f[k][k]; // This is already 0 if k<5 if (ways_comp > 0) { long long term = (nCr_mod_p(i - 1, k - 1) * ways_comp) % MOD; term = (term * dp[i - k][j - k]) % MOD; dp[i][j] = (dp[i][j] + term) % MOD; } } } } } cout << dp[N][M_bar] << endl; return 0; }