結果
| 問題 |
No.1706 Many Bus Stops (hard)
|
| コンテスト | |
| ユーザー |
qwewe
|
| 提出日時 | 2025-05-14 13:23:10 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 45 ms / 2,000 ms |
| コード長 | 2,537 bytes |
| コンパイル時間 | 154 ms |
| コンパイル使用メモリ | 82,236 KB |
| 実行使用メモリ | 61,956 KB |
| 最終ジャッジ日時 | 2025-05-14 13:25:20 |
| 合計ジャッジ時間 | 3,447 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 41 |
ソースコード
def mat_mul(A, B, mod):
C = [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]
for i in range(4):
for j in range(4):
sum_val = 0
for k_loop in range(4): # Renamed k to k_loop to avoid conflict if debugging outer scope k
sum_val = (sum_val + A[i][k_loop] * B[k_loop][j]) % mod
C[i][j] = sum_val
return C
def mat_pow(A, n, mod):
# Identity matrix
res = [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]
for i in range(4):
res[i][i] = 1
base = A
while n > 0:
if n % 2 == 1:
res = mat_mul(res, base, mod)
base = mat_mul(base, base, mod)
n //= 2
return res
def power(base, exp, mod):
res = 1
base %= mod
while exp > 0:
if exp % 2 == 1:
res = (res * base) % mod
base = (base * base) % mod
exp //= 2
return res
def inv(n, mod):
return power(n, mod - 2, mod)
def solve():
C_val, N_val, M_val = map(int, input().split())
MOD = 10**9 + 7
invC = inv(C_val, MOD)
# Matrix T definition
# V_k = (p_k, s_k, p_{k-1}, s_{k-1})^T
# V_{k+1} = T V_k
T_matrix = [[0]*4 for _ in range(4)]
# Constraints: C >= 2. So C-1 >= 1 and C-2 >= 0.
# No need for (C-1+MOD)%MOD type of expressions.
T_matrix[0][0] = invC
T_matrix[0][3] = ((C_val - 1) * invC) % MOD
T_matrix[1][1] = invC
T_matrix[1][2] = invC
T_matrix[1][3] = ((C_val - 2) * invC) % MOD # if C_val=2, this term is 0.
T_matrix[2][0] = 1
T_matrix[3][1] = 1
# We need V_N = T^(N-1) V_1
# p_N is the first component of V_N.
# V_1 = (p_1, s_1, p_0, s_0)^T = (invC, 0, 1, 0)^T
# p_N = (T_pow[0][0]*p_1 + T_pow[0][1]*s_1 + T_pow[0][2]*p_0 + T_pow[0][3]*s_0) % MOD
# p_N = ((T_pow[0][0] * invC) % MOD + T_pow[0][2]) % MOD
# N_val >= 1. So N_val-1 >= 0.
# mat_pow(T, 0, MOD) correctly returns Identity matrix for N_val=1.
T_pow_N_minus_1 = mat_pow(T_matrix, N_val - 1, MOD)
term_p1_contribution = (T_pow_N_minus_1[0][0] * invC) % MOD
term_p0_contribution = T_pow_N_minus_1[0][2] # This is T_pow[0][2] * p_0 where p_0=1
p_N = (term_p1_contribution + term_p0_contribution) % MOD
# Final probability calculation
prob_not_at_stop1_single_bus = (1 - p_N + MOD) % MOD
prob_all_buses_not_at_stop1 = power(prob_not_at_stop1_single_bus, M_val, MOD)
ans = (1 - prob_all_buses_not_at_stop1 + MOD) % MOD
print(ans)
solve()
qwewe