結果
| 問題 |
No.1867 Partitions and Inversions
|
| コンテスト | |
| ユーザー |
qwewe
|
| 提出日時 | 2025-05-14 13:23:11 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 2,534 bytes |
| コンパイル時間 | 230 ms |
| コンパイル使用メモリ | 82,712 KB |
| 実行使用メモリ | 234,248 KB |
| 最終ジャッジ日時 | 2025-05-14 13:25:21 |
| 合計ジャッジ時間 | 6,954 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | -- * 3 |
| other | AC * 2 TLE * 1 -- * 62 |
ソースコード
import sys
def solve():
N = int(sys.stdin.readline())
P_orig = list(map(int, sys.stdin.readline().split()))
# P is 1-indexed for problem logic alignment
P = [0] + P_orig
class FenwickTree:
def __init__(self, size):
self.tree = [0] * (size + 1)
self.size = size
def update(self, idx, delta):
while idx <= self.size:
self.tree[idx] += delta
idx += idx & (-idx)
def query(self, idx):
s = 0
while idx > 0:
s += self.tree[idx]
idx -= idx & (-idx)
return s
def query_count_greater_than(self, val):
if val >= self.size:
return 0
total_items_in_ft = self.query(self.size)
count_leq_val = self.query(val)
return total_items_in_ft - count_leq_val
cost = [[0] * (N + 1) for _ in range(N + 1)]
for l in range(1, N + 1):
ft = FenwickTree(N)
current_segment_inversions = 0
for r in range(l, N + 1):
inversions_with_Pr = ft.query_count_greater_than(P[r])
current_segment_inversions += inversions_with_Pr
cost[l][r] = current_segment_inversions
ft.update(P[r], 1)
total_inv = cost[1][N]
dp = [[-1] * (N + 1) for _ in range(N + 1)]
dp[0][0] = 0
for k_val in range(1, N + 1):
for i in range(1, N + 1):
if i < k_val:
continue
max_removed_for_this_state = -1
min_j_loop_start = k_val - 1
for j in range(min_j_loop_start, i):
if dp[k_val - 1][j] != -1:
current_block_cost = cost[j + 1][i]
current_removed = dp[k_val - 1][j] + current_block_cost
if current_removed > max_removed_for_this_state:
max_removed_for_this_state = current_removed
dp[k_val][i] = max_removed_for_this_state
output_lines = []
for k_ans in range(1, N + 1):
max_removed_total = dp[k_ans][N]
# dp[k_ans][N] should always be >= 0 since costs are non-negative
# and dp[0][0]=0. A value of -1 would mean an issue or unreachable state,
# but all (k_ans, N) states are reachable for 1 <= k_ans <= N.
ans = total_inv - max_removed_total
output_lines.append(str(ans))
sys.stdout.write("\n".join(output_lines) + "\n")
solve()
qwewe