結果
| 問題 |
No.3146 RE: Parentheses Counting
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-05-16 22:07:46 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 9,323 bytes |
| コンパイル時間 | 5,643 ms |
| コンパイル使用メモリ | 261,564 KB |
| 実行使用メモリ | 6,272 KB |
| 最終ジャッジ日時 | 2025-05-16 22:08:05 |
| 合計ジャッジ時間 | 11,224 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | WA * 43 |
ソースコード
#ifndef HIDDEN_IN_VS // 折りたたみ用
// 警告の抑制
#define _CRT_SECURE_NO_WARNINGS
// ライブラリの読み込み
#include <bits/stdc++.h>
using namespace std;
// 型名の短縮
using ll = long long; using ull = unsigned long long; // -2^63 ~ 2^63 = 9e18(int は -2^31 ~ 2^31 = 2e9)
using pii = pair<int, int>; using pll = pair<ll, ll>; using pil = pair<int, ll>; using pli = pair<ll, int>;
using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using vvvvi = vector<vvvi>;
using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>; using vvvvl = vector<vvvl>;
using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>;
using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>;
using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;
// 定数の定義
const double PI = acos(-1);
int DX[4] = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左)
int DY[4] = { 0, 1, 0, -1 };
int INF = 1001001001; ll INFL = 4004004003094073385LL; // (int)INFL = INF, (int)(-INFL) = -INF;
// 入出力高速化
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;
// 汎用マクロの定義
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), (x)))
#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), (x)))
#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順
#define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能)
#define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能)
#define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d ビット全探索(昇順)
#define repis(i, set) for(int i = lsb(set), bset##i = set; i < 32; bset##i -= 1 << i, i = lsb(bset##i)) // set の全要素(昇順)
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順)
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去
#define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了
#define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 半開矩形内判定
// 汎用関数の定義
template <class T> inline ll powi(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す)
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す)
template <class T> inline T getb(T set, int i) { return (set >> i) & T(1); }
template <class T> inline T smod(T n, T m) { n %= m; if (n < 0) n += m; return n; } // 非負mod
// 演算子オーバーロード
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }
#endif // 折りたたみ用
#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;
#ifdef _MSC_VER
#include "localACL.hpp"
#endif
using mint = modint998244353;
//using mint = static_modint<(int)1e9 + 7>;
//using mint = modint; // mint::set_mod(m);
namespace atcoder {
inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }
}
using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>; using pim = pair<int, mint>;
#endif
#ifdef _MSC_VER // 手元環境(Visual Studio)
#include "local.hpp"
#else // 提出用(gcc)
inline int popcount(int n) { return __builtin_popcount(n); }
inline int popcount(ll n) { return __builtin_popcountll(n); }
inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : 32; }
inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : 64; }
inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }
inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }
#define dump(...)
#define dumpel(v)
#define dump_math(v)
#define input_from_file(f)
#define output_to_file(f)
#define Assert(b) { if (!(b)) { vc MLE(1<<30); EXIT(MLE.back()); } } // RE の代わりに MLE を出す
#endif
//【部分集合の全探索(大きさ固定)】O(nCr)
/*
* 大きさ n の全体集合 Ω のうち,大きさ r の部分集合 set⊂Ω を昇順に全探索する.
*
* 制約:r > 0
*/
// verify : https://onlinejudge.u-aizu.ac.jp/courses/lesson/8/ITP2/all/ITP2_11_D
#define repbc(set, n, r) for(int set = (1 << int(r)) - 1, lb, nx; set < (1 << int(n)); lb = set & -set, nx = set + lb, set = (((set & ~nx) / lb) >> 1) | nx)
//【括弧列の正規性判定】O(n)
/*
* 文字列 s[0..n) が正規括弧列かを返す.
*/
bool valid_parenthesis_sequenceQ(const string& s) {
// verify : https://atcoder.jp/contests/arc141/tasks/arc141_c
//【方法】
// 括弧文字列 s[0..n) に対して,'(' を +1, ')' を -1 に置き換える操作を行い,
// さらに左から累積和をとったものを acc[0..n] とする.このとき,
// s が正規括弧列 ⇔ min(acc) = acc[n] = 0
int n = sz(s);
vi acc(n + 1);
rep(i, n) {
int val = 0;
if (s[i] == '(') val = 1;
if (s[i] == ')') val = -1;
if (val == 0) return false;
acc[i + 1] = acc[i] + val;
}
return *min_element(all(acc)) == 0 && acc[n] == 0;
}
//【正規括弧列 → 木】O(n)
/*
* 正規括弧列 s[0..2n) について,ネスト関係を表した 0 を根とする有向根付き木 g[0..n] を返す.
* i 番目の頂点は対応する括弧の組 s[ls[i]] = '(', s[rs[i]] = ')' に対応し,子ほどネストが深いものとする.
* ただし ls[0] = -1, rs[0] = 2n とする.
*/
Graph parenthesis_tree(const string& s, vi* ls = nullptr, vi* rs = nullptr) {
// verify : https://atcoder.jp/contests/discovery2016-final/tasks/discovery_2016_final_c
int n = sz(s) / 2;
Graph g(n + 1);
if (ls) ls->resize(n + 1);
if (rs) rs->resize(n + 1);
int id = 1;
stack<pii> stk; // ('(' の位置, 木の頂点番号)
stk.push({ -1, 0 });
if (ls) (*ls)[0] = -1;
if (rs) (*rs)[0] = 2 * n;
rep(i, 2 * n) {
if (s[i] == '(') {
stk.push({ i, id++ });
}
else {
auto [l, v] = stk.top(); stk.pop();
g[stk.top().second].push_back(v);
if (ls) (*ls)[v] = l;
if (rs) (*rs)[v] = i;
}
}
return g;
}
//【木の深さ】O(n)
/*
* 各 s∈[0..n) について,r を根とする木 g の頂点 s の深さを格納したリストを返す.
* s の深さとは,根から s までの辺の本数のことである.
*/
vi depth_of_tree(const Graph& g, int r) {
// verify : https://algo-method.com/tasks/529
int n = sz(g);
vi d(n);
function<void(int, int)> dfs = [&](int s, int p) {
repe(t, g[s]) {
if (t == p) continue;
d[t] = d[s] + 1;
dfs(t, s);
}
};
dfs(r, -1);
return d;
}
ll naive(int n) {
ll res = 0;
repbc(set, 2 * n, n) {
string s;
rep(i, 2 * n) s += "()"[getb(set, i)];
if (!valid_parenthesis_sequenceQ(s)) continue;
//dump(s);
auto g = parenthesis_tree(s);
//dumpel(g);
auto dep = depth_of_tree(g, 0);
//dump(dep);
ll sc = 0;
rep(i, n) if (sz(g[i]) == 0) sc += dep[i];
//dump(sc);
res += sc;
}
return res;
}
void zikken() {
vl seq;
repi(i, 1, 13) {
dump(i);
seq.push_back(naive(i));
dump(seq);
}
dump_math(seq);
exit(0);
}
/*
{0,1,7,36,166,727,3095,12952,53602,220154,899350,3659416,14845676};
DifferenceRoot[Function[{\[FormalY],\[FormalN]},{(-8-16 \[FormalN]) \[FormalY][\[FormalN]]+(54+24 \[FormalN]) \[FormalY][1+\[FormalN]]+(-33-9 \[FormalN]) \[FormalY][2+\[FormalN]]+(5+\[FormalN]) \[FormalY][3+\[FormalN]]==0,\[FormalY][1]==0,\[FormalY][2]==1,\[FormalY][3]==7}]][n]
*/
vm y{ -1,0,1,7,36,166,727,3095,12952,53602,220154,899350,3659416,14845676 };
int main() {
// input_from_file("input.txt");
// output_to_file("output.txt");
// zikken();
int t = 1;
cin >> t; // マルチテストケースの場合
int N = (int)5e5;
y.resize(N + 10);
repi(n, 1, N) {
y[3 + n] = (8 * y[n] + 16 * n * y[n] - 54 * y[1 + n] - 24 * n * y[1 + n] + 33 * y[2 + n] + 9 * n * y[2 + n]) / (5 + n);
}
while (t--) {
dump("------------------------------");
int n;
cin >> n;
if (n & 1) {
cout << 0 << "\n";
continue;
}
dump(naive(n / 2));
cout << y[n / 2] << "\n";
}
}