結果

問題 No.3153 probability max K
ユーザー K2
提出日時 2025-05-20 22:33:31
言語 Python3
(3.13.1 + numpy 2.2.1 + scipy 1.14.1)
結果
AC  
実行時間 1,192 ms / 2,000 ms
コード長 3,755 bytes
コンパイル時間 552 ms
コンパイル使用メモリ 12,800 KB
実行使用メモリ 32,596 KB
最終ジャッジ日時 2025-06-25 16:45:34
合計ジャッジ時間 24,566 ms
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 20
権限があれば一括ダウンロードができます

ソースコード

diff #

class Modint:
    mod = 0
    has_been_set = False

    def __init__(self, v=0, m=None):
        if m != None: 
            assert m >= 1
            assert not Modint.has_been_set
            Modint.mod = m
            Modint.has_been_set = True
        assert Modint.has_been_set
        self._v = v if 0 <= v < Modint.mod else v % Modint.mod
        

    def __add__(self, other):
        if isinstance(other, Modint):
            res = self._v + other._v
            if res > Modint.mod: res -= Modint.mod
        else:
            res = self._v + other
        return Modint(res)
    
    def __sub__(self, other):
        if isinstance(other, Modint):
            res = self._v - other._v
            if res < 0: res += Modint.mod
        else:
            res = self._v - other
        return Modint(res)
    
    def __mul__(self, other):
        if isinstance(other, Modint):
            return Modint(self._v * other._v)
        else:
            return Modint(self._v * other)
    
    def __floordiv__(self, other):
        if isinstance(other, Modint): other = other._v
        inv = pow(other, -1, Modint.mod)
        return Modint(self._v * inv)
    
    def __pow__(self, other):
        assert isinstance(other, int) and other >= 0
        return Modint(pow(self._v, other, Modint.mod))
    
    def __radd__(self, other):
        return Modint(self._v + other)
    
    def __rsub__(self, other):
        return Modint(other - self._v)  

    def __rmul__(self, other):
        return Modint(self._v * other)
    
    def __rfloordiv__(self, other):
        inv = pow(self._v, -1, Modint.mod)
        return Modint(other * inv)
    
    def __iadd__(self, other):
        if isinstance(other, Modint):
            self._v += other._v
            if self._v >= Modint.mod: self._v -= Modint.mod
        else:
            self._v += other
            if self._v < 0 or self._v >= Modint.mod: self._v %= Modint.mod
        return self

    def __isub__(self, other):
        if isinstance(other, Modint):
            self._v -= other._v
            if self._v < 0: self._v += Modint.mod
        else:
            self._v -= other
            if self._v < 0 or self._v >= Modint.mod: self._v %= Modint.mod
        return self
    
    def __imul__(self, other):
        if isinstance(other, Modint):
            self._v *= other._v
        else:
            self._v *= other
        if self._v < 0 or self._v >= Modint.mod: self._v %= Modint.mod
        return self

    def __ifloordiv__(self, other):
        if isinstance(other, Modint): other = other._v
        inv = pow(other, -1, Modint.mod)
        self._v *= inv       
        if self._v > Modint.mod: self._v %= Modint.mod
        return self
    
    def __ipow__(self, other):
        assert isinstance(other, int) and other >= 0
        self._v = pow(self._v, other, Modint.mod)
        return self

    def __eq__(self, other):
        if isinstance(other, Modint):
            return self._v == other._v
        else:
            if other < 0 or other >= Modint.mod:
                other %= Modint.mod
            return self._v == other
    
    def __ne__(self, other):
        if isinstance(other, Modint):
            return self._v != other._v
        else:
            if other < 0 or other >= Modint.mod:
                other %= Modint.mod
            return self._v != other

    def __str__(self):
        return str(self._v)
    
    def __repr__(self):
        return str(self._v)
    
    def __int__(self):
        return self._v

Modint(m=998244353)

N, K = map(int, input().split())
A = list(map(int, input().split()))

def solve(x):
    ans = Modint(1)
    for a in A:
        ans *= x
        ans //= max(x, a)
    return ans

print(solve(K) - solve(K-1))
0