結果
問題 |
No.3160 Party Game
|
ユーザー |
|
提出日時 | 2025-05-23 20:21:05 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 287 ms / 2,000 ms |
コード長 | 4,477 bytes |
コンパイル時間 | 244 ms |
コンパイル使用メモリ | 82,376 KB |
実行使用メモリ | 116,140 KB |
最終ジャッジ日時 | 2025-05-27 22:01:18 |
合計ジャッジ時間 | 8,419 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 38 |
ソースコード
# input import sys input = sys.stdin.readline II = lambda : int(input()) MI = lambda : map(int, input().split()) LI = lambda : [int(a) for a in input().split()] SI = lambda : input().rstrip() LLI = lambda n : [[int(a) for a in input().split()] for _ in range(n)] LSI = lambda n : [input().rstrip() for _ in range(n)] MI_1 = lambda : map(lambda x:int(x)-1, input().split()) LI_1 = lambda : [int(a)-1 for a in input().split()] def graph(n:int, m:int, dir:bool=False, index:int=-1) -> list[set[int]]: edge = [set() for i in range(n+1+index)] for _ in range(m): a,b = map(int, input().split()) a += index b += index edge[a].add(b) if not dir: edge[b].add(a) return edge def graph_w(n:int, m:int, dir:bool=False, index:int=-1) -> list[set[tuple]]: edge = [set() for i in range(n+1+index)] for _ in range(m): a,b,c = map(int, input().split()) a += index b += index edge[a].add((b,c)) if not dir: edge[b].add((a,c)) return edge mod = 998244353 inf = 1001001001001001001 ordalp = lambda s : ord(s)-65 if s.isupper() else ord(s)-97 ordallalp = lambda s : ord(s)-39 if s.isupper() else ord(s)-97 yes = lambda : print("Yes") no = lambda : print("No") yn = lambda flag : print("Yes" if flag else "No") def acc(a:list[int]): sa = [0]*(len(a)+1) for i in range(len(a)): sa[i+1] = a[i] + sa[i] return sa prinf = lambda ans : print(ans if ans < 1000001001001001001 else -1) alplow = "abcdefghijklmnopqrstuvwxyz" alpup = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" alpall = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ" URDL = {'U':(-1,0), 'R':(0,1), 'D':(1,0), 'L':(0,-1)} DIR_4 = [[-1,0],[0,1],[1,0],[0,-1]] DIR_8 = [[-1,0],[-1,1],[0,1],[1,1],[1,0],[1,-1],[0,-1],[-1,-1]] DIR_BISHOP = [[-1,1],[1,1],[1,-1],[-1,-1]] prime60 = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59] sys.set_int_max_str_digits(0) sys.setrecursionlimit(10**6) # import pypyjit # pypyjit.set_param('max_unroll_recursion=-1') from collections import defaultdict,deque from heapq import heappop,heappush from bisect import bisect_left,bisect_right DD = defaultdict BSL = bisect_left BSR = bisect_right class Comb: __slots__ = ["fac", "finv", "mod"] def __init__(self, lim:int, mod:int = mod): """ mod : prime """ self.fac = [1]*(lim+1) self.finv = [1]*(lim+1) self.mod = mod for i in range(2,lim+1): self.fac[i] = self.fac[i-1]*i%self.mod self.finv[lim] = pow(self.fac[lim],-1,mod) for i in range(lim,2,-1): self.finv[i-1] = self.finv[i]*i%self.mod def C(self, a, b): assert b >= 0, "The second argument is negative." if a < b: return 0 if a < 0: return 0 return self.fac[a]*self.finv[b]%self.mod*self.finv[a-b]%self.mod def P(self, a, b): assert b >= 0, "The second argument is negative." if a < b: return 0 if a < 0: return 0 return self.fac[a]*self.finv[a-b]%self.mod def H(self, a, b): return self.C(a+b-1,b) def F(self, a): return self.fac[a] def Fi(self, a): return self.finv[a] def __call__(self, a, b): return self.C(a, b) # 全員の総和がM以下のときのminの期待値 n, m = MI() comb = Comb(2 * 10 ** 6) # 総和s以下、n人、m以下 sgn = [1, -1] lim = max(n, m) # 負の二項係数の分 q = [1] * (lim + 1) for k in range(1, lim + 1): q[k] = comb(n + k - 1, n - 1) # 累積和にしておく for i in range(lim): q[i+1] = (q[i+1] + q[i]) % mod # print(q) def calc(s, n, m): ans = 0 for k in range(s + 1): if s < k * m: break ans += sgn[k & 1] * comb(n, k) * q[s - (k * m)] # print(s, n, m, ans) return ans % mod def calc_naive(s, n, m): dp = [[0] * (s + 1) for _ in range(n + 1)] dp[0][0] = 1 for i in range(1, n + 1): for j in range(s + 1): for k in range(0, m + 1): if j - k >= 0: dp[i][j] += dp[i - 1][j - k] return sum(dp[n][j] for j in range(s + 1)) # for n in range(1, 5): # for m in range(1, 5): # for s in range(10): # print(s,n,m,calc_naive(s, n, m), calc(s, n, m)) ans = 0 for mi in range(1, m): # min が mi 以上となる通り数 if m < n * mi: break r = calc(m - n * mi, n, m - mi) # print(r) ans += r ans = ans * pow(calc(m, n, m), -1, mod) % mod print(ans)