結果
問題 |
No.312 置換処理
|
ユーザー |
|
提出日時 | 2025-05-25 02:32:03 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 2 ms / 2,000 ms |
コード長 | 18,216 bytes |
コンパイル時間 | 3,956 ms |
コンパイル使用メモリ | 308,412 KB |
実行使用メモリ | 7,844 KB |
最終ジャッジ日時 | 2025-05-25 02:32:09 |
合計ジャッジ時間 | 5,191 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 45 |
ソースコード
// competitive-verifier: PROBLEM #include <algorithm> #include <cstdint> #include <iterator> #include <numeric> #include <vector> #include <limits> #include <utility> namespace internal { /// @param m `1 <= m` /// @return x mod m constexpr std::int64_t safe_mod(std::int64_t x, std::int64_t m) { x %= m; if (x < 0) x += m; return x; } /// Fast modular multiplication by barrett reduction /// Reference: https://en.wikipedia.org/wiki/Barrett_reduction /// NOTE: reconsider after Ice Lake struct barrett { unsigned int _m; std::uint64_t im; // @param m `1 <= m` explicit barrett(unsigned int m) : _m(m), im((std::uint64_t)(-1) / m + 1) {} // @return m unsigned int umod() const { return _m; } // @param a `0 <= a < m` // @param b `0 <= b < m` // @return `a * b % m` unsigned int mul(unsigned int a, unsigned int b) const { std::uint64_t z = a; z *= b; std::uint64_t x = (std::uint64_t)(((__uint128_t)(z)*im) >> 64); std::uint64_t y = x * _m; return (unsigned int)(z - y + (z < y ? _m : 0)); } }; /// @brief Montgomery modular multiplication /// @see https://rsk0315.hatenablog.com/entry/2022/11/27/060616 struct montgomery { /// @param m `1 <= m` explicit constexpr montgomery(std::uint64_t m) : _m(m), im(m), r((__uint128_t(1) << 64) % m), r2(-__uint128_t(m) % m) { for (int i = 0; i < 5; ++i) im = im * (2 - _m * im); im = -im; } /// @return m constexpr std::uint64_t umod() const { return _m; } /// @param a `0 <= a < m` /// @param b `0 <= b < m` /// @return `a * b % m` constexpr std::uint64_t mul(std::uint64_t a, std::uint64_t b) const { return mr((__uint128_t)a * mr((__uint128_t)b * r2)); } constexpr std::uint64_t exp(std::uint64_t a, std::uint64_t b) const { std::uint64_t res = 1, p = mr((__uint128_t)a * r2); while (b) { if (b & 1) res = mr((__uint128_t)res * p); p = mr((__uint128_t)p * p); b >>= 1; } return res; } constexpr bool same_pow(std::uint64_t x, int s, std::uint64_t n) const { x = mr((__uint128_t)x * r2), n = mr((__uint128_t)n * r2); for (int r = 0; r < s; r++) { if (x == n) return true; x = mr((__uint128_t)x * x); } return false; } private: std::uint64_t _m, im, r, r2; constexpr std::uint64_t mr(std::uint64_t x) const { std::uint64_t res = (__uint128_t(x * im) * _m + x) >> 64; return res >= _m ? res - _m : res; } constexpr std::uint64_t mr(__uint128_t x) const { std::uint64_t res = (__uint128_t(std::uint64_t(x) * im) * _m + x) >> 64; return res >= _m ? res - _m : res; } constexpr std::uint64_t mr(std::uint64_t a, std::uint64_t b) const { __uint128_t t = (__uint128_t)a * b; std::uint64_t x = t >> 64, y = t; x = mr((__uint128_t)x * r), y = mr(y); return x + y >= _m ? x + y - _m : x + y; } }; constexpr bool is_SPRP32(std::uint32_t n, std::uint32_t a) { std::uint32_t d = n - 1, s = 0; while ((d & 1) == 0) ++s, d >>= 1; std::uint64_t cur = 1, pw = d; while (pw) { if (pw & 1) cur = (cur * a) % n; a = (std::uint64_t)a * a % n; pw >>= 1; } if (cur == 1) return true; for (std::uint32_t r = 0; r < s; r++) { if (cur == n - 1) return true; cur = cur * cur % n; } return false; } /// given 2 <= n,a < 2^64, a prime, check whether n is a-SPRP /// without 2,3,5,13,19,73,193,407521,299210837 constexpr bool is_SPRP64(const montgomery &m, std::uint64_t a) { auto n = m.umod(); std::uint64_t d = n - 1; int s = 0; while ((d & 1) == 0) ++s, d >>= 1; std::uint64_t cur = m.exp(a, d); if (cur == 1) return true; return m.same_pow(cur, s, n - 1); } constexpr bool is_prime_constexpr(std::uint32_t x) { if (x == 2 || x == 3 || x == 5 || x == 7) return true; if (x % 2 == 0 || x % 3 == 0 || x % 5 == 0 || x % 7 == 0) return false; if (x < 121) return (x > 1); std::uint64_t h = x; h = ((h >> 16) ^ h) * 0x45d9f3b; h = ((h >> 16) ^ h) * 0x45d9f3b; h = ((h >> 16) ^ h) & 255; constexpr uint16_t bases[] = { 15591, 2018, 166, 7429, 8064, 16045, 10503, 4399, 1949, 1295, 2776, 3620, 560, 3128, 5212, 2657, 2300, 2021, 4652, 1471, 9336, 4018, 2398, 20462, 10277, 8028, 2213, 6219, 620, 3763, 4852, 5012, 3185, 1333, 6227, 5298, 1074, 2391, 5113, 7061, 803, 1269, 3875, 422, 751, 580, 4729, 10239, 746, 2951, 556, 2206, 3778, 481, 1522, 3476, 481, 2487, 3266, 5633, 488, 3373, 6441, 3344, 17, 15105, 1490, 4154, 2036, 1882, 1813, 467, 3307, 14042, 6371, 658, 1005, 903, 737, 1887, 7447, 1888, 2848, 1784, 7559, 3400, 951, 13969, 4304, 177, 41, 19875, 3110, 13221, 8726, 571, 7043, 6943, 1199, 352, 6435, 165, 1169, 3315, 978, 233, 3003, 2562, 2994, 10587, 10030, 2377, 1902, 5354, 4447, 1555, 263, 27027, 2283, 305, 669, 1912, 601, 6186, 429, 1930, 14873, 1784, 1661, 524, 3577, 236, 2360, 6146, 2850, 55637, 1753, 4178, 8466, 222, 2579, 2743, 2031, 2226, 2276, 374, 2132, 813, 23788, 1610, 4422, 5159, 1725, 3597, 3366, 14336, 579, 165, 1375, 10018, 12616, 9816, 1371, 536, 1867, 10864, 857, 2206, 5788, 434, 8085, 17618, 727, 3639, 1595, 4944, 2129, 2029, 8195, 8344, 6232, 9183, 8126, 1870, 3296, 7455, 8947, 25017, 541, 19115, 368, 566, 5674, 411, 522, 1027, 8215, 2050, 6544, 10049, 614, 774, 2333, 3007, 35201, 4706, 1152, 1785, 1028, 1540, 3743, 493, 4474, 2521, 26845, 8354, 864, 18915, 5465, 2447, 42, 4511, 1660, 166, 1249, 6259, 2553, 304, 272, 7286, 73, 6554, 899, 2816, 5197, 13330, 7054, 2818, 3199, 811, 922, 350, 7514, 4452, 3449, 2663, 4708, 418, 1621, 1171, 3471, 88, 11345, 412, 1559, 194}; return is_SPRP32(x, bases[h]); } constexpr bool is_prime_constexpr(std::uint64_t x) { if (x <= std::numeric_limits<std::uint32_t>::max()) return is_prime_constexpr((std::uint32_t)x); if (x % 2 == 0 || x % 3 == 0 || x % 5 == 0 || x % 7 == 0) return false; montgomery m(x); constexpr std::uint64_t bases[] = {2, 325, 9375, 28178, 450775, 9780504, 1795265022}; for (auto a : bases) { if (!is_SPRP64(m, a)) return false; } return true; } constexpr bool is_prime_constexpr(std::int64_t x) { if (x < 0) return false; return is_prime_constexpr(std::uint64_t(x)); } /// @param n `0 <= n` /// @param m `1 <= m` /// @return `(x ** n) % m` constexpr std::int64_t pow_mod_constexpr(std::int64_t x, std::int64_t n, int m) { if (m == 1) return 0; unsigned int _m = (unsigned int)(m); std::uint64_t r = 1; std::uint64_t y = safe_mod(x, m); while (n) { if (n & 1) r = (r * y) % _m; y = (y * y) % _m; n >>= 1; } return r; } /// Reference: /// M. Forisek and J. Jancina, /// Fast Primality Testing for Integers That Fit into a Machine Word /// @param n `0 <= n` constexpr bool is_prime_constexpr(int n) { if (n <= 1) return false; if (n == 2 || n == 7 || n == 61) return true; if (n % 2 == 0) return false; std::int64_t d = n - 1; while (d % 2 == 0) d /= 2; constexpr std::int64_t bases[3] = {2, 7, 61}; for (std::int64_t a : bases) { std::int64_t t = d; std::int64_t y = pow_mod_constexpr(a, t, n); while (t != n - 1 && y != 1 && y != n - 1) { y = y * y % n; t <<= 1; } if (y != n - 1 && t % 2 == 0) { return false; } } return true; } template <int n> constexpr bool is_prime = is_prime_constexpr(n); /// @param b `1 <= b` /// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g constexpr std::pair<std::int64_t, std::int64_t> inv_gcd(std::int64_t a, std::int64_t b) { a = safe_mod(a, b); if (a == 0) return {b, 0}; std::int64_t s = b, t = a; std::int64_t m0 = 0, m1 = 1; while (t) { std::int64_t u = s / t; s -= t * u; m0 -= m1 * u; auto tmp = s; s = t; t = tmp; tmp = m0; m0 = m1; m1 = tmp; } if (m0 < 0) m0 += b / s; return {s, m0}; } /// Compile time primitive root /// @param m must be prime /// @return primitive root (and minimum in now) constexpr int primitive_root_constexpr(int m) { if (m == 2) return 1; if (m == 167772161) return 3; if (m == 469762049) return 3; if (m == 754974721) return 11; if (m == 998244353) return 3; int divs[20] = {}; divs[0] = 2; int cnt = 1; int x = (m - 1) / 2; while (x % 2 == 0) x /= 2; for (int i = 3; (std::int64_t)(i)*i <= x; i += 2) { if (x % i == 0) { divs[cnt++] = i; while (x % i == 0) { x /= i; } } } if (x > 1) { divs[cnt++] = x; } for (int g = 2;; g++) { bool ok = true; for (int i = 0; i < cnt; i++) { if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) { ok = false; break; } } if (ok) return g; } } template <int m> constexpr int primitive_root = primitive_root_constexpr(m); } // namespace internal #include <array> #include <bit> /** * @brief 疑似乱数生成器 SplitMix64 * @details 周期:$2^64-1$ */ struct split_mix_64 { using state_type = std::uint64_t; using result_type = std::uint64_t; constexpr split_mix_64() noexcept : state(1234567890) {} constexpr split_mix_64(std::uint64_t seed) noexcept : state(seed) {} static constexpr result_type min() noexcept { return std::numeric_limits<result_type>::min(); } static constexpr result_type max() noexcept { return std::numeric_limits<result_type>::max(); } constexpr result_type operator()() { std::uint64_t z = (state += 0x9e3779b97f4a7c15); z = (z ^ (z >> 30)) * 0xbf58476d1ce4e5b9; z = (z ^ (z >> 27)) * 0x94d049bb133111eb; return z ^ (z >> 31); } constexpr state_type serialize() const noexcept { return state; } constexpr void deserialize(const state_type &data) noexcept { state = data; } constexpr void deserialize(state_type &&data) noexcept { state = std::move(data); } template <std::size_t N> constexpr std::array<std::uint64_t, N> generate_seed_sequence() noexcept { std::array<std::uint64_t, N> seeds = {}; for (auto &seed : seeds) seed = operator()(); return seeds; } /// @brief a以上b以下の整数を生成 /// @return uint64_t [a, b] std::uint64_t rand_range(std::uint64_t a, std::uint64_t b) { if (a == split_mix_64::min() && b == split_mix_64::max()) return operator()(); return a + operator()() % (b - a + 1); } /// @brief 0.0以上1.0未満の浮動小数点数を生成 /// @return double [0, 1) double random() { return (double)operator()() / max(); } private: state_type state; }; /// @brief 疑似乱数生成器 xoroshiro128++ struct xoroshiro128 { using state_type = std::array<std::uint64_t, 2>; using result_type = std::uint64_t; constexpr xoroshiro128() noexcept : state(split_mix_64{}.generate_seed_sequence<2>()) {} constexpr xoroshiro128(std::uint64_t seed) noexcept : state(split_mix_64{seed}.generate_seed_sequence<2>()) {} static constexpr result_type min() noexcept { return std::numeric_limits<result_type>::min(); } static constexpr result_type max() noexcept { return std::numeric_limits<result_type>::max(); } constexpr result_type operator()() { const std::uint64_t s0 = state[0]; std::uint64_t s1 = state[1]; const std::uint64_t result = std::rotl(s0 + s1, 17) + s0; s1 ^= s0; state[0] = std::rotl(s0, 49) ^ s1 ^ (s1 << 21), state[1] = std::rotl(s1, 28); return result; } bool operator==(const xoroshiro128 &rhs) noexcept { return (state == rhs.state); } bool operator!=(const xoroshiro128 &rhs) noexcept { return (state != rhs.state); } constexpr state_type serialize() const noexcept { return state; } constexpr void deserialize(const state_type &data) noexcept { state = data; } constexpr void deserialize(state_type &&data) noexcept { state = std::move(data); } /// @brief a以上b以下の整数を生成 /// @return uint64_t [a, b] std::uint64_t rand_range(std::uint64_t a, std::uint64_t b) { if (a == xoroshiro128::min() && b == xoroshiro128::max()) return operator()(); return a + operator()() % (b - a + 1); } /// @brief 0.0以上1.0未満の浮動小数点数を生成 /// @return double [0, 1) double random() noexcept { return (double)operator()() / max(); } private: state_type state; }; namespace internal { std::uint64_t pollard_rho(std::uint64_t n) { static xoroshiro128 rnd; if (~n & 1) return 2; if (internal::is_prime_constexpr(n)) return n; std::uint64_t r = 0, g = 1; auto f = [&](std::uint64_t x) -> std::uint64_t { return ((__uint128_t)x * x + r) % n; }; std::uniform_int_distribution<std::uint64_t> gen(2, n - 1); while (true) { std::uint64_t x, y, z, ys, q = 1; r = gen(rnd), y = gen(rnd); g = 1; constexpr int m = 128; for (int r = 1; g == 1; r <<= 1) { x = y; for (int i = 0; i < r; ++i) y = f(y); for (int k = 0; g == 1 && k < r; k += m) { ys = y; for (int i = 0; i < m && i < r - k; ++i) q = (__uint128_t)q * (x + n - (y = f(y))) % n; g = std::gcd(q, n); } } if (g == n) { do { z = x + n - (ys = f(ys)); if (z >= n) z -= n; g = std::gcd(z, n); } while (g == 1); } if (g != n) break; } return g; } std::vector<std::uint64_t> inner_factorize(std::uint64_t n) { if (n <= 1) return {}; std::uint64_t p = pollard_rho(n); if (p == n) return {p}; auto l = inner_factorize(p); auto r = inner_factorize(n / p); std::copy(r.begin(), r.end(), std::back_inserter(l)); return l; } } // namespace internal /// @brief 素因数分解 std::vector<std::uint64_t> factorize(std::uint64_t n) { auto res = internal::inner_factorize(n); std::sort(res.begin(), res.end()); return res; } std::uint64_t number_of_divisors(std::vector<std::uint64_t> v) { std::sort(v.begin(), v.end()); int c = 0; std::uint64_t res = 1; for (int i = 0; i < (int)v.size(); ++i) { if (i == 0 || v[i] == v[i - 1]) { ++c; } else { res *= c + 1; c = 1; } } return res * (c + 1); } std::uint64_t number_of_divisors(std::uint64_t n) { return number_of_divisors(internal::inner_factorize(n)); } #ifdef ATCODER #pragma GCC target("sse4.2,avx512f,avx512dq,avx512ifma,avx512cd,avx512bw,avx512vl,bmi2") #endif #pragma GCC optimize("Ofast,fast-math,unroll-all-loops") #include <bits/stdc++.h> #ifndef ATCODER #pragma GCC target("sse4.2,avx2,bmi2") #endif template <class T, class U> constexpr bool chmax(T &a, const U &b) { return a < (T)b ? a = (T)b, true : false; } template <class T, class U> constexpr bool chmin(T &a, const U &b) { return (T)b < a ? a = (T)b, true : false; } constexpr std::int64_t INF = 1000000000000000003; constexpr int Inf = 1000000003; constexpr double EPS = 1e-7; constexpr double PI = 3.14159265358979323846; #define FOR(i, m, n) for (int i = (m); i < int(n); ++i) #define FORR(i, m, n) for (int i = (m)-1; i >= int(n); --i) #define FORL(i, m, n) for (int64_t i = (m); i < int64_t(n); ++i) #define rep(i, n) FOR (i, 0, n) #define repn(i, n) FOR (i, 1, n + 1) #define repr(i, n) FORR (i, n, 0) #define repnr(i, n) FORR (i, n + 1, 1) #define all(s) (s).begin(), (s).end() struct Sonic { Sonic() { std::ios::sync_with_stdio(false); std::cin.tie(nullptr); std::cout << std::fixed << std::setprecision(20); } constexpr void operator()() const {} } sonic; using namespace std; using ll = std::int64_t; using ld = long double; template <class T, class U> std::istream &operator>>(std::istream &is, std::pair<T, U> &p) { return is >> p.first >> p.second; } template <class T> std::istream &operator>>(std::istream &is, std::vector<T> &v) { for (T &i : v) is >> i; return is; } template <class T, class U> std::ostream &operator<<(std::ostream &os, const std::pair<T, U> &p) { return os << '(' << p.first << ',' << p.second << ')'; } template <class T> std::ostream &operator<<(std::ostream &os, const std::vector<T> &v) { for (auto it = v.begin(); it != v.end(); ++it) os << (it == v.begin() ? "" : " ") << *it; return os; } template <class Head, class... Tail> void co(Head &&head, Tail &&...tail) { if constexpr (sizeof...(tail) == 0) std::cout << head << '\n'; else std::cout << head << ' ', co(std::forward<Tail>(tail)...); } template <class Head, class... Tail> void ce(Head &&head, Tail &&...tail) { if constexpr (sizeof...(tail) == 0) std::cerr << head << '\n'; else std::cerr << head << ' ', ce(std::forward<Tail>(tail)...); } void Yes(bool is_correct = true) { std::cout << (is_correct ? "Yes\n" : "No\n"); } void No(bool is_not_correct = true) { Yes(!is_not_correct); } void YES(bool is_correct = true) { std::cout << (is_correct ? "YES\n" : "NO\n"); } void NO(bool is_not_correct = true) { YES(!is_not_correct); } void Takahashi(bool is_correct = true) { std::cout << (is_correct ? "Takahashi" : "Aoki") << '\n'; } void Aoki(bool is_not_correct = true) { Takahashi(!is_not_correct); } int main(void) { ll n; cin >> n; if (n % 3 == 0) { co(3); return 0; } if (n % 4 == 0) { co(4); return 0; } while (n % 2 == 0) n /= 2; auto v = factorize(n); for (auto p : v) { if (p >= 3) { co(p); return 0; } } co(n); return 0; }