結果
問題 |
No.848 なかよし旅行
|
ユーザー |
|
提出日時 | 2025-05-25 02:57:11 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 60 ms / 2,000 ms |
コード長 | 9,308 bytes |
コンパイル時間 | 3,770 ms |
コンパイル使用メモリ | 317,980 KB |
実行使用メモリ | 10,508 KB |
最終ジャッジ日時 | 2025-05-25 02:57:18 |
合計ジャッジ時間 | 6,092 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 4 |
other | AC * 26 |
ソースコード
// competitive-verifier: PROBLEM #include <functional> #include <limits> #include <queue> #include <vector> #include <iostream> /** * @brief 重み付きグラフ * * @tparam T 辺の重みの型 */ template <class T> struct Graph { private: struct _edge { constexpr _edge() : _from(), _to(), _weight() {} constexpr _edge(int from, int to, T weight) : _from(from), _to(to), _weight(weight) {} constexpr bool operator<(const _edge &rhs) const { return weight() < rhs.weight(); } constexpr bool operator>(const _edge &rhs) const { return rhs < *this; } constexpr int from() const { return _from; } constexpr int to() const { return _to; } constexpr T weight() const { return _weight; } private: int _from, _to; T _weight; }; public: using edge_type = typename Graph<T>::_edge; Graph() : _size(), edges() {} Graph(int v) : _size(v), edges(v) {} const auto &operator[](int i) const { return edges[i]; } auto &operator[](int i) { return edges[i]; } const auto begin() const { return edges.begin(); } auto begin() { return edges.begin(); } const auto end() const { return edges.end(); } auto end() { return edges.end(); } constexpr int size() const { return _size; } void add_edge(const edge_type &e) { edges[e.from()].emplace_back(e); } void add_edge(int from, int to, T weight = T(1)) { edges[from].emplace_back(from, to, weight); } void add_edges(int from, int to, T weight = T(1)) { edges[from].emplace_back(from, to, weight); edges[to].emplace_back(to, from, weight); } void input_edge(int m, int base = 1) { for (int i = 0; i < m; ++i) { int from, to; T weight; std::cin >> from >> to >> weight; add_edge(from - base, to - base, weight); } } void input_edges(int m, int base = 1) { for (int i = 0; i < m; ++i) { int from, to; T weight; std::cin >> from >> to >> weight; add_edges(from - base, to - base, weight); } } private: int _size; std::vector<std::vector<edge_type>> edges; }; template <> struct Graph<void> { private: struct _edge { constexpr _edge() : _from(), _to() {} constexpr _edge(int from, int to) : _from(from), _to(to) {} constexpr int from() const { return _from; } constexpr int to() const { return _to; } constexpr int weight() const { return 1; } constexpr bool operator<(const _edge &rhs) const { return weight() < rhs.weight(); } constexpr bool operator>(const _edge &rhs) const { return rhs < *this; } private: int _from, _to; }; public: using edge_type = typename Graph<void>::_edge; Graph() : _size(), edges() {} Graph(int v) : _size(v), edges(v) {} const auto &operator[](int i) const { return edges[i]; } auto &operator[](int i) { return edges[i]; } const auto begin() const { return edges.begin(); } auto begin() { return edges.begin(); } const auto end() const { return edges.end(); } auto end() { return edges.end(); } constexpr int size() const { return _size; } void add_edge(const edge_type &e) { edges[e.from()].emplace_back(e); } void add_edge(int from, int to) { edges[from].emplace_back(from, to); } void add_edges(int from, int to) { edges[from].emplace_back(from, to); edges[to].emplace_back(to, from); } void input_edge(int m, int base = 1) { for (int i = 0; i < m; ++i) { int from, to; std::cin >> from >> to; add_edge(from - base, to - base); } } void input_edges(int m, int base = 1) { for (int i = 0; i < m; ++i) { int from, to; std::cin >> from >> to; add_edges(from - base, to - base); } } private: int _size; std::vector<std::vector<edge_type>> edges; }; /** * @brief ダイクストラ法 * * @tparam T 辺の重みの型 * @param g グラフ * @param s 始点 * @param inf 正の無限表現 * @retval std::vector<T> 各頂点までの最短距離 */ template <class T> std::vector<T> dijkstra(const Graph<T> &g, int s = 0, T inf = std::numeric_limits<T>::max()) { struct _node { constexpr _node() : _to(), _dist() {} constexpr _node(int to, T dist) : _to(to), _dist(dist) {} constexpr bool operator<(const _node &rhs) const { return this->dist() < rhs.dist(); } constexpr bool operator>(const _node &rhs) const { return rhs < *this; } constexpr int to() const { return this->_to; } constexpr T dist() const { return this->_dist; } private: int _to; T _dist; }; std::vector<T> dists(g.size(), inf); std::priority_queue<_node, std::vector<_node>, std::greater<>> p_que; dists[s] = T(); p_que.emplace(s, T()); while (!p_que.empty()) { auto node = p_que.top(); p_que.pop(); if (dists[node.to()] < node.dist()) continue; for (auto &e : g[node.to()]) { if (node.dist() + e.weight() < dists[e.to()]) { dists[e.to()] = node.dist() + e.weight(); p_que.emplace(e.to(), dists[e.to()]); } } } return dists; } std::vector<int> dijkstra(const Graph<void> &g, int s = 0, int inf = std::numeric_limits<int>::max()) { std::vector<int> dists(g.size(), inf); std::queue<int> que; dists[s] = 0; que.emplace(s); while (!que.empty()) { auto index = que.front(); que.pop(); for (auto &e : g[index]) { if (dists[index] + 1 < dists[e.to()]) { dists[e.to()] = dists[index] + 1; que.emplace(e.to()); } } } return dists; } #ifdef ATCODER #pragma GCC target("sse4.2,avx512f,avx512dq,avx512ifma,avx512cd,avx512bw,avx512vl,bmi2") #endif #pragma GCC optimize("Ofast,fast-math,unroll-all-loops") #include <bits/stdc++.h> #ifndef ATCODER #pragma GCC target("sse4.2,avx2,bmi2") #endif template <class T, class U> constexpr bool chmax(T &a, const U &b) { return a < (T)b ? a = (T)b, true : false; } template <class T, class U> constexpr bool chmin(T &a, const U &b) { return (T)b < a ? a = (T)b, true : false; } constexpr std::int64_t INF = 1000000000000000003; constexpr int Inf = 1000000003; constexpr double EPS = 1e-7; constexpr double PI = 3.14159265358979323846; #define FOR(i, m, n) for (int i = (m); i < int(n); ++i) #define FORR(i, m, n) for (int i = (m)-1; i >= int(n); --i) #define FORL(i, m, n) for (int64_t i = (m); i < int64_t(n); ++i) #define rep(i, n) FOR (i, 0, n) #define repn(i, n) FOR (i, 1, n + 1) #define repr(i, n) FORR (i, n, 0) #define repnr(i, n) FORR (i, n + 1, 1) #define all(s) (s).begin(), (s).end() struct Sonic { Sonic() { std::ios::sync_with_stdio(false); std::cin.tie(nullptr); std::cout << std::fixed << std::setprecision(20); } constexpr void operator()() const {} } sonic; using namespace std; using ll = std::int64_t; using ld = long double; template <class T, class U> std::istream &operator>>(std::istream &is, std::pair<T, U> &p) { return is >> p.first >> p.second; } template <class T> std::istream &operator>>(std::istream &is, std::vector<T> &v) { for (T &i : v) is >> i; return is; } template <class T, class U> std::ostream &operator<<(std::ostream &os, const std::pair<T, U> &p) { return os << '(' << p.first << ',' << p.second << ')'; } template <class T> std::ostream &operator<<(std::ostream &os, const std::vector<T> &v) { for (auto it = v.begin(); it != v.end(); ++it) os << (it == v.begin() ? "" : " ") << *it; return os; } template <class Head, class... Tail> void co(Head &&head, Tail &&...tail) { if constexpr (sizeof...(tail) == 0) std::cout << head << '\n'; else std::cout << head << ' ', co(std::forward<Tail>(tail)...); } template <class Head, class... Tail> void ce(Head &&head, Tail &&...tail) { if constexpr (sizeof...(tail) == 0) std::cerr << head << '\n'; else std::cerr << head << ' ', ce(std::forward<Tail>(tail)...); } void Yes(bool is_correct = true) { std::cout << (is_correct ? "Yes\n" : "No\n"); } void No(bool is_not_correct = true) { Yes(!is_not_correct); } void YES(bool is_correct = true) { std::cout << (is_correct ? "YES\n" : "NO\n"); } void NO(bool is_not_correct = true) { YES(!is_not_correct); } void Takahashi(bool is_correct = true) { std::cout << (is_correct ? "Takahashi" : "Aoki") << '\n'; } void Aoki(bool is_not_correct = true) { Takahashi(!is_not_correct); } int main(void) { int n, m, p, q, t; cin >> n >> m >> p >> q >> t; --p, --q; Graph<ll> g(n); g.input_edges(m); auto v = dijkstra(g); auto vp = dijkstra(g, p); auto vq = dijkstra(g, q); if (v[p] + vp[q] + v[q] <= t) { co(t); return 0; } ll ans = INF; rep (i, n) { rep (j, n) { if (v[i] + max(vp[i] + vp[j], vq[i] + vq[j]) + v[j] <= t) { chmin(ans, max(vp[i] + vp[j], vq[i] + vq[j])); } } } if (ans == INF) { co(-1); } else { co(t - ans); } return 0; }