結果
| 問題 |
No.848 なかよし旅行
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-05-25 02:57:11 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 60 ms / 2,000 ms |
| コード長 | 9,308 bytes |
| コンパイル時間 | 3,770 ms |
| コンパイル使用メモリ | 317,980 KB |
| 実行使用メモリ | 10,508 KB |
| 最終ジャッジ日時 | 2025-05-25 02:57:18 |
| 合計ジャッジ時間 | 6,092 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 26 |
ソースコード
// competitive-verifier: PROBLEM
#include <functional>
#include <limits>
#include <queue>
#include <vector>
#include <iostream>
/**
* @brief 重み付きグラフ
*
* @tparam T 辺の重みの型
*/
template <class T>
struct Graph {
private:
struct _edge {
constexpr _edge() : _from(), _to(), _weight() {}
constexpr _edge(int from, int to, T weight) : _from(from), _to(to), _weight(weight) {}
constexpr bool operator<(const _edge &rhs) const { return weight() < rhs.weight(); }
constexpr bool operator>(const _edge &rhs) const { return rhs < *this; }
constexpr int from() const { return _from; }
constexpr int to() const { return _to; }
constexpr T weight() const { return _weight; }
private:
int _from, _to;
T _weight;
};
public:
using edge_type = typename Graph<T>::_edge;
Graph() : _size(), edges() {}
Graph(int v) : _size(v), edges(v) {}
const auto &operator[](int i) const { return edges[i]; }
auto &operator[](int i) { return edges[i]; }
const auto begin() const { return edges.begin(); }
auto begin() { return edges.begin(); }
const auto end() const { return edges.end(); }
auto end() { return edges.end(); }
constexpr int size() const { return _size; }
void add_edge(const edge_type &e) { edges[e.from()].emplace_back(e); }
void add_edge(int from, int to, T weight = T(1)) { edges[from].emplace_back(from, to, weight); }
void add_edges(int from, int to, T weight = T(1)) {
edges[from].emplace_back(from, to, weight);
edges[to].emplace_back(to, from, weight);
}
void input_edge(int m, int base = 1) {
for (int i = 0; i < m; ++i) {
int from, to;
T weight;
std::cin >> from >> to >> weight;
add_edge(from - base, to - base, weight);
}
}
void input_edges(int m, int base = 1) {
for (int i = 0; i < m; ++i) {
int from, to;
T weight;
std::cin >> from >> to >> weight;
add_edges(from - base, to - base, weight);
}
}
private:
int _size;
std::vector<std::vector<edge_type>> edges;
};
template <>
struct Graph<void> {
private:
struct _edge {
constexpr _edge() : _from(), _to() {}
constexpr _edge(int from, int to) : _from(from), _to(to) {}
constexpr int from() const { return _from; }
constexpr int to() const { return _to; }
constexpr int weight() const { return 1; }
constexpr bool operator<(const _edge &rhs) const { return weight() < rhs.weight(); }
constexpr bool operator>(const _edge &rhs) const { return rhs < *this; }
private:
int _from, _to;
};
public:
using edge_type = typename Graph<void>::_edge;
Graph() : _size(), edges() {}
Graph(int v) : _size(v), edges(v) {}
const auto &operator[](int i) const { return edges[i]; }
auto &operator[](int i) { return edges[i]; }
const auto begin() const { return edges.begin(); }
auto begin() { return edges.begin(); }
const auto end() const { return edges.end(); }
auto end() { return edges.end(); }
constexpr int size() const { return _size; }
void add_edge(const edge_type &e) { edges[e.from()].emplace_back(e); }
void add_edge(int from, int to) { edges[from].emplace_back(from, to); }
void add_edges(int from, int to) {
edges[from].emplace_back(from, to);
edges[to].emplace_back(to, from);
}
void input_edge(int m, int base = 1) {
for (int i = 0; i < m; ++i) {
int from, to;
std::cin >> from >> to;
add_edge(from - base, to - base);
}
}
void input_edges(int m, int base = 1) {
for (int i = 0; i < m; ++i) {
int from, to;
std::cin >> from >> to;
add_edges(from - base, to - base);
}
}
private:
int _size;
std::vector<std::vector<edge_type>> edges;
};
/**
* @brief ダイクストラ法
*
* @tparam T 辺の重みの型
* @param g グラフ
* @param s 始点
* @param inf 正の無限表現
* @retval std::vector<T> 各頂点までの最短距離
*/
template <class T>
std::vector<T> dijkstra(const Graph<T> &g, int s = 0, T inf = std::numeric_limits<T>::max()) {
struct _node {
constexpr _node() : _to(), _dist() {}
constexpr _node(int to, T dist) : _to(to), _dist(dist) {}
constexpr bool operator<(const _node &rhs) const { return this->dist() < rhs.dist(); }
constexpr bool operator>(const _node &rhs) const { return rhs < *this; }
constexpr int to() const { return this->_to; }
constexpr T dist() const { return this->_dist; }
private:
int _to;
T _dist;
};
std::vector<T> dists(g.size(), inf);
std::priority_queue<_node, std::vector<_node>, std::greater<>> p_que;
dists[s] = T();
p_que.emplace(s, T());
while (!p_que.empty()) {
auto node = p_que.top();
p_que.pop();
if (dists[node.to()] < node.dist()) continue;
for (auto &e : g[node.to()]) {
if (node.dist() + e.weight() < dists[e.to()]) {
dists[e.to()] = node.dist() + e.weight();
p_que.emplace(e.to(), dists[e.to()]);
}
}
}
return dists;
}
std::vector<int> dijkstra(const Graph<void> &g, int s = 0,
int inf = std::numeric_limits<int>::max()) {
std::vector<int> dists(g.size(), inf);
std::queue<int> que;
dists[s] = 0;
que.emplace(s);
while (!que.empty()) {
auto index = que.front();
que.pop();
for (auto &e : g[index]) {
if (dists[index] + 1 < dists[e.to()]) {
dists[e.to()] = dists[index] + 1;
que.emplace(e.to());
}
}
}
return dists;
}
#ifdef ATCODER
#pragma GCC target("sse4.2,avx512f,avx512dq,avx512ifma,avx512cd,avx512bw,avx512vl,bmi2")
#endif
#pragma GCC optimize("Ofast,fast-math,unroll-all-loops")
#include <bits/stdc++.h>
#ifndef ATCODER
#pragma GCC target("sse4.2,avx2,bmi2")
#endif
template <class T, class U>
constexpr bool chmax(T &a, const U &b) {
return a < (T)b ? a = (T)b, true : false;
}
template <class T, class U>
constexpr bool chmin(T &a, const U &b) {
return (T)b < a ? a = (T)b, true : false;
}
constexpr std::int64_t INF = 1000000000000000003;
constexpr int Inf = 1000000003;
constexpr double EPS = 1e-7;
constexpr double PI = 3.14159265358979323846;
#define FOR(i, m, n) for (int i = (m); i < int(n); ++i)
#define FORR(i, m, n) for (int i = (m)-1; i >= int(n); --i)
#define FORL(i, m, n) for (int64_t i = (m); i < int64_t(n); ++i)
#define rep(i, n) FOR (i, 0, n)
#define repn(i, n) FOR (i, 1, n + 1)
#define repr(i, n) FORR (i, n, 0)
#define repnr(i, n) FORR (i, n + 1, 1)
#define all(s) (s).begin(), (s).end()
struct Sonic {
Sonic() {
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
std::cout << std::fixed << std::setprecision(20);
}
constexpr void operator()() const {}
} sonic;
using namespace std;
using ll = std::int64_t;
using ld = long double;
template <class T, class U>
std::istream &operator>>(std::istream &is, std::pair<T, U> &p) {
return is >> p.first >> p.second;
}
template <class T>
std::istream &operator>>(std::istream &is, std::vector<T> &v) {
for (T &i : v) is >> i;
return is;
}
template <class T, class U>
std::ostream &operator<<(std::ostream &os, const std::pair<T, U> &p) {
return os << '(' << p.first << ',' << p.second << ')';
}
template <class T>
std::ostream &operator<<(std::ostream &os, const std::vector<T> &v) {
for (auto it = v.begin(); it != v.end(); ++it) os << (it == v.begin() ? "" : " ") << *it;
return os;
}
template <class Head, class... Tail>
void co(Head &&head, Tail &&...tail) {
if constexpr (sizeof...(tail) == 0) std::cout << head << '\n';
else std::cout << head << ' ', co(std::forward<Tail>(tail)...);
}
template <class Head, class... Tail>
void ce(Head &&head, Tail &&...tail) {
if constexpr (sizeof...(tail) == 0) std::cerr << head << '\n';
else std::cerr << head << ' ', ce(std::forward<Tail>(tail)...);
}
void Yes(bool is_correct = true) { std::cout << (is_correct ? "Yes\n" : "No\n"); }
void No(bool is_not_correct = true) { Yes(!is_not_correct); }
void YES(bool is_correct = true) { std::cout << (is_correct ? "YES\n" : "NO\n"); }
void NO(bool is_not_correct = true) { YES(!is_not_correct); }
void Takahashi(bool is_correct = true) { std::cout << (is_correct ? "Takahashi" : "Aoki") << '\n'; }
void Aoki(bool is_not_correct = true) { Takahashi(!is_not_correct); }
int main(void) {
int n, m, p, q, t;
cin >> n >> m >> p >> q >> t;
--p, --q;
Graph<ll> g(n);
g.input_edges(m);
auto v = dijkstra(g);
auto vp = dijkstra(g, p);
auto vq = dijkstra(g, q);
if (v[p] + vp[q] + v[q] <= t) {
co(t);
return 0;
}
ll ans = INF;
rep (i, n) {
rep (j, n) {
if (v[i] + max(vp[i] + vp[j], vq[i] + vq[j]) + v[j] <= t) {
chmin(ans, max(vp[i] + vp[j], vq[i] + vq[j]));
}
}
}
if (ans == INF) {
co(-1);
} else {
co(t - ans);
}
return 0;
}