結果
| 問題 |
No.3122 Median of Medians of Division
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-05-26 00:13:36 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
RE
|
| 実行時間 | - |
| コード長 | 6,461 bytes |
| コンパイル時間 | 13,075 ms |
| コンパイル使用メモリ | 396,832 KB |
| 実行使用メモリ | 24,616 KB |
| 最終ジャッジ日時 | 2025-05-26 00:13:56 |
| 合計ジャッジ時間 | 16,361 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | WA * 13 RE * 27 |
ソースコード
#![allow(unused_imports,non_snake_case,dead_code)]
use std::{cmp::Reverse as Rev,collections::*,iter::*};
use proconio::{marker::*,*};
// use ac_library::Segtree;
#[fastout]
fn main(){
input!{
n:usize,
q:usize,
mut a:[i64;n],
qs:[(usize,usize,usize);q],
}
let get=|i:usize,a:&[i64]|->(i64,i64){
let v0=*a.get(i).unwrap_or(&i64::MAX);
let v1=*a.get(i+1).unwrap_or(&i64::MAX);
(v0.min(v1),i64::MIN)
};
let mut seg={
let a=(0..n-1).map(|i|get(i,&a)).collect::<Vec<_>>();
Segtree::<S>::from(a)
};
for &(t,p,q) in &qs{
if t==1{
let (i,x)=(p-1,q as i64);
a[i]=x;
seg.set(i,get(i,&a));
seg.set(i+1,get(i+1,&a));
} else{
let (l,r)=(p-1,q-1);
let seg_max=seg.prod(l..r);
let mut val=[seg_max.0,seg_max.1,a[l],a[r]];
val.sort();
val.reverse();
let ans=val[1];
println!("{ans}");
// todo!();
}
}
}
struct S();
impl Monoid for S{
type S=(i64,i64);
fn identity()->(i64,i64){
(i64::MIN,i64::MIN)
}
fn binary_operation(a:&(i64,i64),b:&(i64,i64))->(i64,i64){
let mut a=*a;
let mut b=*b;
if a.0<=b.0{
(a,b)=(b,a);
}
(a.0,a.1.max(b.0))
}
}
fn ceil_pow2(n: u32) -> u32 {
32 - n.saturating_sub(1).leading_zeros()
}
// TODO Should I split monoid-related traits to another module?
pub trait Monoid {
type S: Clone;
fn identity() -> Self::S;
fn binary_operation(a: &Self::S, b: &Self::S) -> Self::S;
}
impl<M: Monoid> Default for Segtree<M> {
fn default() -> Self {
Segtree::new(0)
}
}
impl<M: Monoid> Segtree<M> {
pub fn new(n: usize) -> Segtree<M> {
vec![M::identity(); n].into()
}
}
impl<M: Monoid> From<Vec<M::S>> for Segtree<M> {
fn from(v: Vec<M::S>) -> Self {
let n = v.len();
let log = ceil_pow2(n as u32) as usize;
let size = 1 << log;
let mut d = vec![M::identity(); 2 * size];
d[size..(size + n)].clone_from_slice(&v);
let mut ret = Segtree { n, size, log, d };
for i in (1..size).rev() {
ret.update(i);
}
ret
}
}
impl<M: Monoid> Segtree<M> {
pub fn set(&mut self, mut p: usize, x: M::S) {
assert!(p < self.n);
p += self.size;
self.d[p] = x;
for i in 1..=self.log {
self.update(p >> i);
}
}
pub fn get(&self, p: usize) -> M::S {
assert!(p < self.n);
self.d[p + self.size].clone()
}
pub fn prod<R>(&self, range: R) -> M::S
where
R: std::ops::RangeBounds<usize>,
{
// Trivial optimization
if range.start_bound() == Bound::Unbounded && range.end_bound() == Bound::Unbounded {
return self.all_prod();
}
let mut r = match range.end_bound() {
Bound::Included(r) => r + 1,
Bound::Excluded(r) => *r,
Bound::Unbounded => self.n,
};
let mut l = match range.start_bound() {
Bound::Included(l) => *l,
Bound::Excluded(l) => l + 1,
// TODO: There are another way of optimizing [0..r)
Bound::Unbounded => 0,
};
assert!(l <= r && r <= self.n);
let mut sml = M::identity();
let mut smr = M::identity();
l += self.size;
r += self.size;
while l < r {
if l & 1 != 0 {
sml = M::binary_operation(&sml, &self.d[l]);
l += 1;
}
if r & 1 != 0 {
r -= 1;
smr = M::binary_operation(&self.d[r], &smr);
}
l >>= 1;
r >>= 1;
}
M::binary_operation(&sml, &smr)
}
pub fn all_prod(&self) -> M::S {
self.d[1].clone()
}
pub fn max_right<F>(&self, mut l: usize, f: F) -> usize
where
F: Fn(&M::S) -> bool,
{
assert!(l <= self.n);
assert!(f(&M::identity()));
if l == self.n {
return self.n;
}
l += self.size;
let mut sm = M::identity();
while {
// do
while l % 2 == 0 {
l >>= 1;
}
if !f(&M::binary_operation(&sm, &self.d[l])) {
while l < self.size {
l *= 2;
let res = M::binary_operation(&sm, &self.d[l]);
if f(&res) {
sm = res;
l += 1;
}
}
return l - self.size;
}
sm = M::binary_operation(&sm, &self.d[l]);
l += 1;
// while
{
let l = l as isize;
(l & -l) != l
}
} {}
self.n
}
pub fn min_left<F>(&self, mut r: usize, f: F) -> usize
where
F: Fn(&M::S) -> bool,
{
assert!(r <= self.n);
assert!(f(&M::identity()));
if r == 0 {
return 0;
}
r += self.size;
let mut sm = M::identity();
while {
// do
r -= 1;
while r > 1 && r % 2 == 1 {
r >>= 1;
}
if !f(&M::binary_operation(&self.d[r], &sm)) {
while r < self.size {
r = 2 * r + 1;
let res = M::binary_operation(&self.d[r], &sm);
if f(&res) {
sm = res;
r -= 1;
}
}
return r + 1 - self.size;
}
sm = M::binary_operation(&self.d[r], &sm);
// while
{
let r = r as isize;
(r & -r) != r
}
} {}
0
}
fn update(&mut self, k: usize) {
self.d[k] = M::binary_operation(&self.d[2 * k], &self.d[2 * k + 1]);
}
}
// Maybe we can use this someday
// ```
// for i in 0..=self.log {
// for j in 0..1 << i {
// print!("{}\t", self.d[(1 << i) + j]);
// }
// println!();
// }
// ```
struct Segtree<M>
where
M: Monoid,
{
// variable name is _n in original library
n: usize,
size: usize,
log: usize,
d: Vec<M::S>,
}