結果
| 問題 |
No.772 Dynamic Distance Sum
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-05-29 23:56:27 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
RE
|
| 実行時間 | - |
| コード長 | 14,453 bytes |
| コンパイル時間 | 2,289 ms |
| コンパイル使用メモリ | 204,536 KB |
| 実行使用メモリ | 28,416 KB |
| 最終ジャッジ日時 | 2025-05-29 23:56:40 |
| 合計ジャッジ時間 | 12,587 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 2 RE * 25 |
コンパイルメッセージ
main.cpp: In function ‘int main()’:
main.cpp:634:10: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
634 | scanf("%d %d", &n, &q);
| ~~~~~^~~~~~~~~~~~~~~~~
main.cpp:645:14: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
645 | scanf("%d", &op);
| ~~~~~^~~~~~~~~~~
main.cpp:649:18: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
649 | scanf("%d %d %d", &x, &y, &z);
| ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~
main.cpp:658:18: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
658 | scanf("%d %d", &x, &y);
| ~~~~~^~~~~~~~~~~~~~~~~
main.cpp:667:18: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
667 | scanf("%d", &x);
| ~~~~~^~~~~~~~~~
ソースコード
#include <bits/stdc++.h>
// https://github.com/ecnerwala/cp-book/blob/master/src/top_tree.hpp
/**
* Top tree!
*
* Usage:
* Make a `struct T : public top_tree_node_base<T>` (CRTP), which implements
* void update()
* void downdate()
* void do_flip_path()
* void do_other_operation() ...
* When update() is called, you can assume downdate() has already been called.
*
* In general, do_op() should eagerly apply the operation but not touch the
* children. In downdate(), you can push down to the children with ch->do_op().
* WARNING: if different operations do not trivially commute, you *must*
* implement a way to swap/alter them to compose in a consistent order, and you
* must use that order when implementing downdate(). This can be nontrivial!
*
* Creating vertices:
* n->is_path = n->is_vert = true;
* n->update();
*
* Creating edges: no setup/update() needed, just call
* link(e, va, vb);
*
* Updates:
* auto cur = get_path(va, vb); // or get_subtree(va, vb)
* cur->do_stuff();
* cur->downdate();
* cur->update_all();
*
* Node types:
* path edges: compress(c[0], self, c[1])
* assert(is_path && !is_vert);
* assert(c[0] && c[1]);
* assert(c[0]->is_path && c[1]->is_path);
* assert(!c[2]);
* (path) vertices: self + rake(c[0], c[1])
* assert(is_path && is_vert);
* assert(!c[2]);
* if (c[0]) assert(!c[0]->is_path);
* if (c[1]) assert(!c[1]->is_path);
* non-path edges: rake(c[0], self + c[2], c[1])
* assert(!is_path && !is_vert);
* assert(c[2])
* assert(c[2]->is_path);
* if (c[0]) assert(!c[0]->is_path);
* if (c[1]) assert(!c[1]->is_path);
*/
template <typename top_tree_node> struct top_tree_node_base {
private:
top_tree_node* derived_this() {
return static_cast<top_tree_node*>(this);
}
const top_tree_node* derived_this() const {
return static_cast<const top_tree_node*>(this);
}
public:
mutable top_tree_node* p = nullptr;
std::array<top_tree_node*, 3> c{nullptr, nullptr, nullptr};
int d() const {
assert(p);
if (this == p->c[0]) {
return 0;
} else if (this == p->c[1]) {
return 1;
} else if (this == p->c[2]) {
return 2;
} else assert(false);
}
top_tree_node*& p_c() const { return p->c[d()]; } // p->c which points to you
// 3 types of verts: path edges, path verts, non-path edges
bool is_path;
bool is_vert;
bool r() const { return !p || p->is_path != is_path; }
private:
// Convenience wrappers for the derived functions.
void do_flip_path() {
derived_this()->do_flip_path();
}
void downdate() {
derived_this()->downdate();
}
void update() {
derived_this()->update();
}
public:
void downdate_all() {
if (p) p->downdate_all();
downdate();
}
// Returns the root
top_tree_node* update_all() {
top_tree_node* cur = derived_this();
cur->update();
while (cur->p) {
cur = cur->p;
cur->update();
}
return cur;
}
private:
void rot() {
assert(!is_vert);
assert(!r());
top_tree_node* pa = p;
int x = d(); assert(x == 0 || x == 1);
top_tree_node* ch = c[!x];
if (pa->p) pa->p_c() = derived_this();
this->p = pa->p;
pa->c[x] = ch;
if (ch) ch->p = pa;
this->c[!x] = pa;
pa->p = derived_this();
pa->update();
}
void rot_2(int c_d) {
assert(!is_vert);
assert(!r());
assert(c[c_d]);
assert(!c[c_d]->is_vert);
if (d() == c_d) {
rot();
return;
}
top_tree_node* pa = p;
int x = d(); assert(x == 0 || x == 1);
assert(c_d == !x);
top_tree_node* ch = c[c_d]->c[!x];
if (pa->p) pa->p_c() = derived_this();
this->p = pa->p;
pa->c[x] = ch;
if (ch) ch->p = pa;
this->c[c_d]->c[!x] = pa;
pa->p = this->c[c_d];
pa->update();
}
void splay_dir(int x) {
while (!r() && d() == x) {
if (!p->r() && p->d() == x) {
p->rot();
}
rot();
}
}
void splay_2(int c_d) {
assert(!is_vert && is_path);
assert(c[c_d] && !c[c_d]->is_vert);
while (!r()) {
if (!p->r()) {
if (p->d() == d()) {
p->rot();
} else {
rot_2(c_d);
}
}
rot_2(c_d);
}
}
void splay_2() {
assert(!is_vert && is_path);
assert(!r());
p->splay_2(d());
}
void splay_vert() {
assert(is_vert);
if (r()) {
return;
}
p->splay_dir(d());
if (p->r()) {
return;
}
assert(p->d() != d());
// we have a preference to be the left child
if (d() == 1) {
p->rot();
}
assert(d() == 0);
p->splay_2();
assert(d() == 0);
assert(p->d() == 1);
assert(p->p->r());
}
void splay() {
assert(!is_vert);
while (!r()) {
if (!p->r()) {
if (p->d() == d()) {
p->rot();
} else {
rot();
}
}
rot();
}
}
top_tree_node* cut_right() {
assert(is_vert && is_path);
splay_vert();
if (r() || d() == 1) {
assert(r() || (d() == 1 && p->r()));
assert(c[0] == nullptr);
return nullptr;
}
top_tree_node* pa = p;
assert(pa->r() || (pa->d() == 1 && pa->p->r()));
assert(!pa->is_vert);
assert(pa->is_path);
assert(pa->c[0] == this);
assert(pa->c[2] == nullptr);
if (pa->p) pa->p_c() = derived_this();
this->p = pa->p;
pa->is_path = false;
pa->c[2] = pa->c[1]; // don't need to change the parent
pa->c[0] = c[0]; if (c[0]) c[0]->p = pa;
pa->c[1] = c[1]; if (c[1]) c[1]->p = pa;
c[0] = nullptr;
c[1] = pa; pa->p = derived_this();
assert(c[2] == nullptr);
assert(c[0] == nullptr);
pa->update();
return pa;
}
top_tree_node* splice_non_path() {
assert(!is_path);
assert(!is_vert);
splay();
assert(p && p->is_vert && p->is_path);
p->cut_right();
if (!p->is_path) rot();
assert(p && p->is_vert && p->is_path);
assert(p->r() || (p->d() == 1 && p->p->r()));
assert(p->c[d()] == this && p->c[!d()] == nullptr);
top_tree_node* pa = p;
if (pa->p) pa->p_c() = derived_this();
this->p = pa->p;
pa->c[0] = c[0]; if (c[0]) c[0]->p = pa;
pa->c[1] = c[1]; if (c[1]) c[1]->p = pa;
assert(c[2] && c[2]->is_path);
c[1] = c[2]; // don't need to change parent
c[0] = pa; pa->p = derived_this();
c[2] = nullptr;
is_path = true;
pa->update();
return pa;
}
// Return the topmost vertex which was spliced into
top_tree_node* splice_all() {
top_tree_node* res = nullptr;
for (top_tree_node* cur = derived_this(); cur; cur = cur->p) {
if (!cur->is_path) {
res = cur->splice_non_path();
}
assert(cur->is_path);
}
return res;
}
public:
// Return the topmost vertex which was spliced into
top_tree_node* expose() {
assert(is_vert);
downdate_all();
top_tree_node* res = splice_all();
cut_right();
update_all();
return res;
}
// Return the topmost vertex which was spliced into
top_tree_node* expose_edge() {
assert(!is_vert);
downdate_all();
top_tree_node* v = is_path ? c[1] : c[2];
v->downdate();
while (!v->is_vert) {
v = v->c[0];
v->downdate();
}
top_tree_node* res = v->splice_all();
v->cut_right();
v->update_all();
assert(!p);
assert(v == c[1]);
return res;
}
// Return the new root
top_tree_node* meld_path_end() {
assert(!p);
top_tree_node* rt = derived_this();
while (true) {
rt->downdate();
if (rt->is_vert) break;
rt = rt->c[1];
}
assert(rt->is_vert);
rt->splay_vert();
if (rt->c[0] && rt->c[1]) {
top_tree_node* ch = rt->c[1];
while (true) {
ch->downdate();
if (!ch->c[0]) break;
ch = ch->c[0];
}
ch->splay();
assert(ch->c[0] == nullptr);
ch->c[0] = rt->c[0];
ch->c[0]->p = ch;
rt->c[0] = nullptr;
ch->update();
} else if (rt->c[0]) {
rt->c[1] = rt->c[0];
rt->c[0] = nullptr;
}
assert(rt->c[0] == nullptr);
return rt->update_all();
}
void make_root() {
expose();
top_tree_node* rt = derived_this();
while (rt->p) {
assert(rt->d() == 1);
rt = rt->p;
}
rt->do_flip_path();
rt->meld_path_end();
expose();
assert(!p);
}
// Link v2 as a child of v1 with edge e
friend void link(top_tree_node* e, top_tree_node* v1, top_tree_node* v2) {
assert(e && v1 && v2);
assert(!e->c[0] && !e->c[1] && !e->c[2]);
v1->expose(); while (v1->p) v1 = v1->p;
v2->make_root();
assert(!v1->p);
assert(!v2->p);
e->is_path = true, e->is_vert = false;
e->c[0] = v1;
v1->p = e;
e->c[1] = v2;
v2->p = e;
e->update();
}
// Link v2's root as a child of v1 with edge e
// Returns false if they're already in the same subtree
friend bool link_root(top_tree_node* e, top_tree_node* v1, top_tree_node* v2) {
assert(e && v1 && v2);
assert(!e->c[0] && !e->c[1] && !e->c[2]);
v1->expose();
v2->expose();
while (v1->p) v1 = v1->p;
while (v2->p) v2 = v2->p;
if (v1 == v2) return false;
assert(!v1->p);
assert(!v2->p);
e->is_path = true, e->is_vert = false;
e->c[0] = v1;
v1->p = e;
e->c[1] = v2;
v2->p = e;
e->update();
return true;
}
// Link v2 as a child of v1 with edge e, v2 must be the root
friend void link_direct(top_tree_node* e, top_tree_node* v1, top_tree_node* v2) {
assert(e && v1 && v2);
assert(!e->c[0] && !e->c[1] && !e->c[2]);
v1->expose();
v2->expose();
while (v1->p) v1 = v1->p;
assert(!v2->p);
assert(v1 != v2);
assert(!v1->p);
assert(!v2->p);
e->is_path = true, e->is_vert = false;
e->c[0] = v1;
v1->p = e;
e->c[1] = v2;
v2->p = e;
e->update();
}
// Cuts the edge e
// Returns the top-tree-root of the two halves; they are not necessarily the split vertices.
friend std::pair<top_tree_node*, top_tree_node*> cut(top_tree_node* e) {
assert(!e->is_vert);
e->expose_edge();
assert(!e->p);
assert(e->is_path);
top_tree_node* l = e->c[0];
top_tree_node* r = e->c[1];
assert(l && r);
e->c[0] = e->c[1] = nullptr;
l->p = r->p = nullptr;
assert(e->c[2] == nullptr);
l = l->meld_path_end();
return {l, r};
}
friend top_tree_node* get_path(top_tree_node* a, top_tree_node* b) {
assert(a->is_vert && b->is_vert);
a->make_root();
b->expose();
if (a == b) {
assert(!b->p);
return b;
}
assert(!b->p->p);
return b->p;
}
friend top_tree_node* get_subtree(top_tree_node* rt, top_tree_node* n) {
rt->make_root();
n->expose();
return n;
}
friend top_tree_node* get_path_to_root(top_tree_node* b) {
assert(b->is_vert);
b->expose();
if (!b->p) return b;
assert(!b->p->p);
return b->p;
}
friend top_tree_node* get_subtree_from_root(top_tree_node* n) {
n->expose();
return n;
}
};
using namespace std;
typedef long long ll;
struct Node : public top_tree_node_base<Node> {
bool lazy_flip_path = false;
int v;
ll sumw, sumd, sumdd, suml, len, w;
Node(): v(0), sumw(0), sumd(0), sumdd(0), suml(0), len(0), w(0) {}
Node(int _v): v(_v), sumw(1), sumd(0), sumdd(0), suml(0), len(0), w(1) {}
Node(ll _len, bool _): v(0), sumw(0), sumd(0), sumdd(0), suml(0), len(_len), w(0) {}
void do_flip_path() {
assert(is_path);
std::swap(c[0], c[1]);
lazy_flip_path ^= 1;
swap(sumd, sumdd);
}
void downdate() {
if (lazy_flip_path) {
assert(is_path);
if (!is_vert) {
c[0]->do_flip_path();
c[1]->do_flip_path();
}
lazy_flip_path = false;
}
}
// NOTE: You may assume downdate() has been called on the current node, but
// it may not have been called on the children! In particular, be careful
// when accessing grandchildren information.
void update() {
if (is_vert) {
sumw = w, sumd = suml = 0;
if (c[0]) sumw += c[0]->sumw, sumd += c[0]->sumd;
if (c[1]) sumw += c[1]->sumw, sumd += c[1]->sumd;
sumdd = sumd;
}
else if (is_path) {
sumw = c[0]->sumw + c[1]->sumw;
sumd = c[0]->sumd + c[1]->sumd + c[1]->sumw * (c[0]->suml + len);
sumdd = c[1]->sumdd + c[0]->sumdd + c[0]->sumw * (c[1]->suml + len);
suml = c[0]->suml + c[1]->suml + len;
}
else {
sumw = sumd = suml = 0;
if (c[0]) sumw += c[0]->sumw, sumd += c[0]->sumd;
if (c[1]) sumw += c[1]->sumw, sumd += c[1]->sumd;
sumw += c[2]->sumw, sumd += c[2]->sumd + c[2]->sumw * len;
sumdd = sumd;
}
}
void toggle(){
assert(is_vert);
w ^= 1;
}
};
Node *ver[100100];
ll query(int x){
ver[x]->make_root();
int y = -1; // ans
auto cur = ver[x];
ll l = 0, r = 0, tot = ver[x]->sumw;
while(true){
if (cur->is_vert){
l = l + r;
r = 0;
y = cur->v;
ll d = (cur->c[0])?(cur->c[0]->sumw):0ll;
ll e = (cur->c[1])?(cur->c[1]->sumw):0ll;
if (d > tot - d) cur = cur->c[0], l += cur->w + e;
else if (e > tot - e) cur = cur->c[1], l += cur->w + d;
else break;
}
else if (cur->is_path){
ll d = cur->c[0]->sumw + l;
ll e = cur->c[1]->sumw + r;
if (d > e) cur = cur->c[0], r = e;
else cur = cur->c[1], l = d;
}
else{
ll d = (cur->c[0])?(cur->c[0]->sumw):0ll;
ll e = (cur->c[1])?(cur->c[1]->sumw):0ll;
ll f = cur->c[2]->sumw;
if (d > tot - d) cur = cur->c[0], l += e + f;
else if (e > tot - e) cur = cur->c[1], l += d + f;
else if (f > tot - f) cur = cur->c[2], l += d + e;
else break;
}
}
ver[y]->make_root();
return ver[y]->sumd;
}
int main(){
int n, q;
scanf("%d %d", &n, &q);
for (int i=1;i<=n;i++){
ver[i] = new Node(i);
ver[i]->is_path = ver[i]->is_vert = true;
ver[i]->update();
}
ll s = 0;
while(q--){
int op;
scanf("%d", &op);
if (op==1){
int x, y, z;
scanf("%d %d %d", &x, &y, &z);
x = (x - 1 + s) % n + 1;
y = (y - 1 + s) % n + 1;
link(new Node(z, false), ver[x], ver[y]);
}
if (op==2){
int x, y;
scanf("%d %d", &x, &y);
x = (x - 1 + s) % n + 1;
y = (y - 1 + s) % n + 1;
cut(get_path(ver[x], ver[y]));
}
if (op==3){
int x;
scanf("%d", &x);
x = (x - 1 + s) % n + 1;
ver[x]->make_root();
ver[x]->toggle();
ver[x]->downdate();
ver[x]->update_all();
ll t = query(x);
printf("%lld\n", t);
s += t;
s %= n;
}
}
}