結果

問題 No.772 Dynamic Distance Sum
ユーザー 리프
提出日時 2025-05-30 01:00:47
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 886 ms / 5,000 ms
コード長 14,505 bytes
コンパイル時間 2,443 ms
コンパイル使用メモリ 203,396 KB
実行使用メモリ 28,416 KB
最終ジャッジ日時 2025-05-30 01:01:18
合計ジャッジ時間 20,469 ms
ジャッジサーバーID
(参考情報)
judge1 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 27
権限があれば一括ダウンロードができます
コンパイルメッセージ
main.cpp: In function ‘int main()’:
main.cpp:637:10: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
  637 |     scanf("%d %d", &n, &q);
      |     ~~~~~^~~~~~~~~~~~~~~~~
main.cpp:648:14: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
  648 |         scanf("%d", &op);
      |         ~~~~~^~~~~~~~~~~
main.cpp:652:18: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
  652 |             scanf("%d %d %d", &x, &y, &z);
      |             ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~
main.cpp:661:18: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
  661 |             scanf("%d %d", &x, &y);
      |             ~~~~~^~~~~~~~~~~~~~~~~
main.cpp:670:18: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
  670 |             scanf("%d", &x);
      |             ~~~~~^~~~~~~~~~

ソースコード

diff #

#include <bits/stdc++.h>

// https://github.com/ecnerwala/cp-book/blob/master/src/top_tree.hpp

/**
 * Top tree!
 *
 * Usage:
 *   Make a `struct T : public top_tree_node_base<T>` (CRTP), which implements
 *     void update()
 *     void downdate()
 *     void do_flip_path()
 *     void do_other_operation() ...
 *   When update() is called, you can assume downdate() has already been called.
 *
 *   In general, do_op() should eagerly apply the operation but not touch the
 *   children. In downdate(), you can push down to the children with ch->do_op().
 *   WARNING: if different operations do not trivially commute, you *must*
 *   implement a way to swap/alter them to compose in a consistent order, and you
 *   must use that order when implementing downdate(). This can be nontrivial!
 *
 *   Creating vertices:
 *     n->is_path = n->is_vert = true;
 *     n->update();
 *
 *   Creating edges: no setup/update() needed, just call
 *     link(e, va, vb);
 *
 *   Updates:
 *     auto cur = get_path(va, vb); // or get_subtree(va, vb)
 *     cur->do_stuff();
 *     cur->downdate();
 *     cur->update_all();
 *
 * Node types:
 *   path edges: compress(c[0], self, c[1])
 *     assert(is_path && !is_vert);
 *     assert(c[0] && c[1]);
 *     assert(c[0]->is_path && c[1]->is_path);
 *     assert(!c[2]);
 *   (path) vertices: self + rake(c[0], c[1])
 *     assert(is_path && is_vert);
 *     assert(!c[2]);
 *     if (c[0]) assert(!c[0]->is_path);
 *     if (c[1]) assert(!c[1]->is_path);
 *   non-path edges: rake(c[0], self + c[2], c[1])
 *     assert(!is_path && !is_vert);
 *     assert(c[2])
 *     assert(c[2]->is_path);
 *     if (c[0]) assert(!c[0]->is_path);
 *     if (c[1]) assert(!c[1]->is_path);
 */

template <typename top_tree_node> struct top_tree_node_base {
private:
	top_tree_node* derived_this() {
		return static_cast<top_tree_node*>(this);
	}
	const top_tree_node* derived_this() const {
		return static_cast<const top_tree_node*>(this);
	}
public:
	mutable top_tree_node* p = nullptr;
	std::array<top_tree_node*, 3> c{nullptr, nullptr, nullptr};

	int d() const {
		assert(p);
		if (this == p->c[0]) {
			return 0;
		} else if (this == p->c[1]) {
			return 1;
		} else if (this == p->c[2]) {
			return 2;
		} else assert(false);
	}
	top_tree_node*& p_c() const { return p->c[d()]; } // p->c which points to you

	// 3 types of verts: path edges, path verts, non-path edges
	bool is_path;
	bool is_vert;

	bool r() const { return !p || p->is_path != is_path; }

private:
	// Convenience wrappers for the derived functions.
	void do_flip_path() {
		derived_this()->do_flip_path();
	}
	void downdate() {
		derived_this()->downdate();
	}
	void update() {
		derived_this()->update();
	}

public:
	void downdate_all() {
		if (p) p->downdate_all();
		downdate();
	}

	// Returns the root
	top_tree_node* update_all() {
		top_tree_node* cur = derived_this();
		cur->update();
		while (cur->p) {
			cur = cur->p;
			cur->update();
		}
		return cur;
	}

private:

	void rot() {
		assert(!is_vert);
		assert(!r());
		top_tree_node* pa = p;
		int x = d(); assert(x == 0 || x == 1);
		top_tree_node* ch = c[!x];

		if (pa->p) pa->p_c() = derived_this();
		this->p = pa->p;

		pa->c[x] = ch;
		if (ch) ch->p = pa;

		this->c[!x] = pa;
		pa->p = derived_this();

		pa->update();
	}

	void rot_2(int c_d) {
		assert(!is_vert);
		assert(!r());
		assert(c[c_d]);
		assert(!c[c_d]->is_vert);

		if (d() == c_d) {
			rot();
			return;
		}

		top_tree_node* pa = p;
		int x = d(); assert(x == 0 || x == 1);
		assert(c_d == !x);
		top_tree_node* ch = c[c_d]->c[!x];

		if (pa->p) pa->p_c() = derived_this();
		this->p = pa->p;

		pa->c[x] = ch;
		if (ch) ch->p = pa;

		this->c[c_d]->c[!x] = pa;
		pa->p = this->c[c_d];

		pa->update();
	}

	void splay_dir(int x) {
		while (!r() && d() == x) {
			if (!p->r() && p->d() == x) {
				p->rot();
			}
			rot();
		}
	}

	void splay_2(int c_d) {
		assert(!is_vert && is_path);
		assert(c[c_d] && !c[c_d]->is_vert);
		while (!r()) {
			if (!p->r()) {
				if (p->d() == d()) {
					p->rot();
				} else {
					rot_2(c_d);
				}
			}
			rot_2(c_d);
		}
	}

	void splay_2() {
		assert(!is_vert && is_path);
		assert(!r());
		p->splay_2(d());
	}

	void splay_vert() {
		assert(is_vert);
		if (r()) {
			return;
		}
		p->splay_dir(d());
		if (p->r()) {
			return;
		}

		assert(p->d() != d());
		// we have a preference to be the left child
		if (d() == 1) {
			p->rot();
		}
		assert(d() == 0);

		p->splay_2();
		assert(d() == 0);
		assert(p->d() == 1);
		assert(p->p->r());
	}

	void splay() {
		assert(!is_vert);
		while (!r()) {
			if (!p->r()) {
				if (p->d() == d()) {
					p->rot();
				} else {
					rot();
				}
			}
			rot();
		}
	}

	top_tree_node* cut_right() {
		assert(is_vert && is_path);
		splay_vert();

		if (r() || d() == 1) {
			assert(r() || (d() == 1 && p->r()));
			assert(c[0] == nullptr);
			return nullptr;
		}

		top_tree_node* pa = p;
		assert(pa->r() || (pa->d() == 1 && pa->p->r()));
		assert(!pa->is_vert);
		assert(pa->is_path);
		assert(pa->c[0] == this);
		assert(pa->c[2] == nullptr);

		if (pa->p) pa->p_c() = derived_this();
		this->p = pa->p;

		pa->is_path = false;
		pa->c[2] = pa->c[1]; // don't need to change the parent

		pa->c[0] = c[0]; if (c[0]) c[0]->p = pa;
		pa->c[1] = c[1]; if (c[1]) c[1]->p = pa;

		c[0] = nullptr;
		c[1] = pa; pa->p = derived_this();
		assert(c[2] == nullptr);

		assert(c[0] == nullptr);

		pa->update();
		return pa;
	}

	top_tree_node* splice_non_path() {
		assert(!is_path);
		assert(!is_vert);

		splay();
		assert(p && p->is_vert && p->is_path);
		p->cut_right();

		if (!p->is_path) rot();
		assert(p && p->is_vert && p->is_path);
		assert(p->r() || (p->d() == 1 && p->p->r()));
		assert(p->c[d()] == this && p->c[!d()] == nullptr);

		top_tree_node* pa = p;

		if (pa->p) pa->p_c() = derived_this();
		this->p = pa->p;

		pa->c[0] = c[0]; if (c[0]) c[0]->p = pa;
		pa->c[1] = c[1]; if (c[1]) c[1]->p = pa;

		assert(c[2] && c[2]->is_path);
		c[1] = c[2]; // don't need to change parent
		c[0] = pa; pa->p = derived_this();
		c[2] = nullptr;

		is_path = true;

		pa->update();
		return pa;
	}

	// Return the topmost vertex which was spliced into
	top_tree_node* splice_all() {
		top_tree_node* res = nullptr;
		for (top_tree_node* cur = derived_this(); cur; cur = cur->p) {
			if (!cur->is_path) {
				res = cur->splice_non_path();
			}
			assert(cur->is_path);
		}
		return res;
	}

public:
	// Return the topmost vertex which was spliced into
	top_tree_node* expose() {
		assert(is_vert);
		downdate_all();

		top_tree_node* res = splice_all();

		cut_right();

		update_all();

		return res;
	}

	// Return the topmost vertex which was spliced into
	top_tree_node* expose_edge() {
		assert(!is_vert);
		downdate_all();

		top_tree_node* v = is_path ? c[1] : c[2];
		v->downdate();

		while (!v->is_vert) {
			v = v->c[0];
			v->downdate();
		}

		top_tree_node* res = v->splice_all();
		v->cut_right();
		v->update_all();

		assert(!p);
		assert(v == c[1]);

		return res;
	}

	// Return the new root
	top_tree_node* meld_path_end() {
		assert(!p);
		top_tree_node* rt = derived_this();
		while (true) {
			rt->downdate();
			if (rt->is_vert) break;
			rt = rt->c[1];
		}
		assert(rt->is_vert);
		rt->splay_vert();
		if (rt->c[0] && rt->c[1]) {
			top_tree_node* ch = rt->c[1];
			while (true) {
				ch->downdate();
				if (!ch->c[0]) break;
				ch = ch->c[0];
			}
			ch->splay();
			assert(ch->c[0] == nullptr);

			ch->c[0] = rt->c[0];
			ch->c[0]->p = ch;

			rt->c[0] = nullptr;

			ch->update();
		} else if (rt->c[0]) {
			rt->c[1] = rt->c[0];
			rt->c[0] = nullptr;
		}
		assert(rt->c[0] == nullptr);
		return rt->update_all();
	}

	void make_root() {
		expose();

		top_tree_node* rt = derived_this();
		while (rt->p) {
			assert(rt->d() == 1);
			rt = rt->p;
		}
		rt->do_flip_path();
		rt->meld_path_end();

		expose();

		assert(!p);
	}

	// Link v2 as a child of v1 with edge e
	friend void link(top_tree_node* e, top_tree_node* v1, top_tree_node* v2) {
		assert(e && v1 && v2);
		assert(!e->c[0] && !e->c[1] && !e->c[2]);
		v1->expose(); while (v1->p) v1 = v1->p;
		v2->make_root();

		assert(!v1->p);
		assert(!v2->p);

		e->is_path = true, e->is_vert = false;
		e->c[0] = v1;
		v1->p = e;
		e->c[1] = v2;
		v2->p = e;
		e->update();
	}

	// Link v2's root as a child of v1 with edge e
	// Returns false if they're already in the same subtree
	friend bool link_root(top_tree_node* e, top_tree_node* v1, top_tree_node* v2) {
		assert(e && v1 && v2);
		assert(!e->c[0] && !e->c[1] && !e->c[2]);
		v1->expose();
		v2->expose();

		while (v1->p) v1 = v1->p;
		while (v2->p) v2 = v2->p;
		if (v1 == v2) return false;

		assert(!v1->p);
		assert(!v2->p);

		e->is_path = true, e->is_vert = false;
		e->c[0] = v1;
		v1->p = e;
		e->c[1] = v2;
		v2->p = e;
		e->update();

		return true;
	}

	// Link v2 as a child of v1 with edge e, v2 must be the root
	friend void link_direct(top_tree_node* e, top_tree_node* v1, top_tree_node* v2) {
		assert(e && v1 && v2);
		assert(!e->c[0] && !e->c[1] && !e->c[2]);
		v1->expose();
		v2->expose();

		while (v1->p) v1 = v1->p;
		assert(!v2->p);

		assert(v1 != v2);

		assert(!v1->p);
		assert(!v2->p);

		e->is_path = true, e->is_vert = false;
		e->c[0] = v1;
		v1->p = e;
		e->c[1] = v2;
		v2->p = e;
		e->update();
	}

	// Cuts the edge e
	// Returns the top-tree-root of the two halves; they are not necessarily the split vertices.
	friend std::pair<top_tree_node*, top_tree_node*> cut(top_tree_node* e) {
		assert(!e->is_vert);
		e->expose_edge();

		assert(!e->p);
		assert(e->is_path);

		top_tree_node* l = e->c[0];
		top_tree_node* r = e->c[1];
		assert(l && r);

		e->c[0] = e->c[1] = nullptr;
		l->p = r->p = nullptr;

		assert(e->c[2] == nullptr);

		l = l->meld_path_end();

		return {l, r};
	}

	friend top_tree_node* get_path(top_tree_node* a, top_tree_node* b) {
		assert(a->is_vert && b->is_vert);
		a->make_root();
		b->expose();
		if (a == b) {
			assert(!b->p);
			return b;
		}
		assert(!b->p->p);
		return b->p;
	}

	friend top_tree_node* get_subtree(top_tree_node* rt, top_tree_node* n) {
		rt->make_root();
		n->expose();
		return n;
	}

	friend top_tree_node* get_path_to_root(top_tree_node* b) {
		assert(b->is_vert);
		b->expose();
		if (!b->p) return b;
		assert(!b->p->p);
		return b->p;
	}

	friend top_tree_node* get_subtree_from_root(top_tree_node* n) {
		n->expose();
		return n;
	}

};

using namespace std;
typedef long long ll;

struct Node : public top_tree_node_base<Node> {
	bool lazy_flip_path = false;

    int v;
    ll sumw, sumd, sumdd, suml, len, w;

    Node(): v(0), sumw(0), sumd(0), sumdd(0), suml(0), len(0), w(0) {}
    Node(int _v): v(_v), sumw(1), sumd(0), sumdd(0), suml(0), len(0), w(1) {}
    Node(ll _len, bool _): v(0), sumw(0), sumd(0), sumdd(0), suml(0), len(_len), w(0) {}

	void do_flip_path() {
		assert(is_path);
		std::swap(c[0], c[1]);
		lazy_flip_path ^= 1;
        swap(sumd, sumdd);
	}

	void downdate() {
		if (lazy_flip_path) {
			assert(is_path);
			if (!is_vert) {
				c[0]->do_flip_path();
				c[1]->do_flip_path();
			}
			lazy_flip_path = false;
		}
	}

	// NOTE: You may assume downdate() has been called on the current node, but
	// it may not have been called on the children! In particular, be careful
	// when accessing grandchildren information.
	void update() {
		if (is_vert) {
            sumw = w, sumd = suml = 0;
            if (c[0]) sumw += c[0]->sumw, sumd += c[0]->sumd;
            if (c[1]) sumw += c[1]->sumw, sumd += c[1]->sumd;
            sumdd = sumd;
		} 
        
        else if (is_path) {
            sumw = c[0]->sumw + c[1]->sumw;
            sumd = c[0]->sumd + c[1]->sumd + c[1]->sumw * (c[0]->suml + len);
            sumdd = c[1]->sumdd + c[0]->sumdd + c[0]->sumw * (c[1]->suml + len);
            suml = c[0]->suml + c[1]->suml + len;
		} 
        
        else {
            sumw = sumd = suml = 0;
            if (c[0]) sumw += c[0]->sumw, sumd += c[0]->sumd;
            if (c[1]) sumw += c[1]->sumw, sumd += c[1]->sumd;
            sumw += c[2]->sumw, sumd += c[2]->sumd + c[2]->sumw * len;

            sumdd = sumd;
		}
	}

    void toggle(){
        assert(is_vert);
        w ^= 1;
    }
};

Node *ver[100100];

ll query(int x){
    ver[x]->make_root();
    
    int y = -1; // ans
    auto cur = ver[x];
    ll l = 0, r = 0, tot = ver[x]->sumw;

    while(true){
        cur->downdate();
        
        if (cur->is_vert){
            l = l + r;
            r = 0;
            y = cur->v;

            ll d = (cur->c[0])?(cur->c[0]->sumw):0ll;
            ll e = (cur->c[1])?(cur->c[1]->sumw):0ll;
            ll w = cur->w;

            if (d > tot - d) cur = cur->c[0], l += w + e;
            else if (e > tot - e) cur = cur->c[1], l += w + d;
            else break;
        }

        else if (cur->is_path){
            ll d = cur->c[0]->sumw + l;
            ll e = cur->c[1]->sumw + r;

            if (d > e) cur = cur->c[0], r = e;
            else cur = cur->c[1], l = d;
        }

        else{
            ll d = (cur->c[0])?(cur->c[0]->sumw):0ll;
            ll e = (cur->c[1])?(cur->c[1]->sumw):0ll;
            ll f = cur->c[2]->sumw;

            if (d > tot - d) cur = cur->c[0], l += e + f;
            else if (e > tot - e) cur = cur->c[1], l += d + f;
            else if (f > tot - f) cur = cur->c[2], l += d + e;
            else break;
        }
    }

    ver[y]->make_root();
    return ver[y]->sumd;
}

int main(){
    int n, q;
    scanf("%d %d", &n, &q);

    for (int i=1;i<=n;i++){
        ver[i] = new Node(i);
        ver[i]->is_path = ver[i]->is_vert = true;
        ver[i]->update();
    }

    ll s = 0;
    while(q--){
        int op;
        scanf("%d", &op);

        if (op==1){
            int x, y, z;
            scanf("%d %d %d", &x, &y, &z);
            x = (x - 1 + s) % n + 1;
            y = (y - 1 + s) % n + 1;

            link(new Node(z, false), ver[x], ver[y]);
        }

        if (op==2){
            int x, y;
            scanf("%d %d", &x, &y);
            x = (x - 1 + s) % n + 1;
            y = (y - 1 + s) % n + 1;

            cut(get_path(ver[x], ver[y]));
        }

        if (op==3){
            int x;
            scanf("%d", &x);
            x = (x - 1 + s) % n + 1;

            ver[x]->make_root();
            ver[x]->toggle();
            ver[x]->downdate();
            ver[x]->update_all();

            ll t = query(x);

            printf("%lld\n", t);
            
            s += t;
            s %= n;
        }
    }
}
0