結果

問題 No.1288 yuki collection
ユーザー kuhaku
提出日時 2025-05-30 19:22:17
言語 C++23
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 44 ms / 5,000 ms
コード長 13,666 bytes
コンパイル時間 5,211 ms
コンパイル使用メモリ 331,896 KB
実行使用メモリ 7,844 KB
最終ジャッジ日時 2025-05-30 19:22:25
合計ジャッジ時間 6,728 ms
ジャッジサーバーID
(参考情報)
judge2 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 40
権限があれば一括ダウンロードができます

ソースコード

diff #

// competitive-verifier: PROBLEM
#include <algorithm>
#include <cassert>
#include <limits>
#include <vector>
#include <iostream>
#include <utility>
namespace internal {
struct graph_csr {
  private:
    struct edge_list {
        using const_iterator = std::vector<int>::const_iterator;
        edge_list(const graph_csr &g, int v) : g(g), v(v) {}
        const_iterator begin() const { return std::next(g.elist.begin(), g.start[v]); }
        const_iterator end() const { return std::next(g.elist.begin(), g.start[v + 1]); }
      private:
        const graph_csr &g;
        int v;
    };
  public:
    graph_csr(int n) : _size(n), edges(), start(n + 1) {}
    edge_list operator[](int i) const { return edge_list(*this, i); }
    constexpr int size() const { return _size; }
    void build() {
        for (auto [u, v] : edges) ++start[u + 1];
        for (int i = 0; i < _size; ++i) start[i + 1] += start[i];
        auto counter = start;
        elist = std::vector<int>(edges.size());
        for (auto [u, v] : edges) elist[counter[u]++] = v;
    }
    void add_edge(int u, int v) { edges.emplace_back(u, v); }
    void add_edges(int u, int v) {
        edges.emplace_back(u, v);
        edges.emplace_back(v, u);
    }
    void input_edge(int m, int base = 1) {
        for (int i = 0; i < m; ++i) {
            int from, to;
            std::cin >> from >> to;
            add_edge(from - base, to - base);
        }
        build();
    }
    void input_edges(int m, int base = 1) {
        for (int i = 0; i < m; ++i) {
            int from, to;
            std::cin >> from >> to;
            add_edges(from - base, to - base);
        }
        build();
    }
    int _size;
    std::vector<std::pair<int, int>> edges;
    std::vector<int> elist;
    std::vector<int> start;
};
template <class E>
struct csr {
    std::vector<int> start;
    std::vector<E> elist;
    explicit csr(int n, const std::vector<std::pair<int, E>> &edges) : start(n + 1), elist(edges.size()) {
        for (auto e : edges) ++start[e.first + 1];
        for (int i = 1; i <= n; ++i) start[i] += start[i - 1];
        auto counter = start;
        for (auto e : edges) elist[counter[e.first]++] = e.second;
    }
};
}  // namespace internal
/// @brief 最小費用流
template <class Cap, class Cost>
struct mcf_graph {
    mcf_graph() {}
    explicit mcf_graph(int n) : _n(n) {}
    int size() const { return _n; }
    int add_edge(int from, int to, Cap cap, Cost cost) {
        assert(0 <= from && from < _n);
        assert(0 <= to && to < _n);
        assert(0 <= cap);
        assert(0 <= cost);
        int m = int(_edges.size());
        _edges.emplace_back(from, to, cap, 0, cost);
        return m;
    }
    struct edge {
        int from, to;
        Cap cap, flow;
        Cost cost;
        constexpr edge(int _from, int _to, Cap _cap, Cap _flow, Cost _cost)
            : from(_from), to(_to), cap(_cap), flow(_flow), cost(_cost) {}
    };
    edge get_edge(int i) {
        int m = int(_edges.size());
        assert(0 <= i && i < m);
        return _edges[i];
    }
    std::vector<edge> edges() { return _edges; }
    std::pair<Cap, Cost> flow(int s, int t) { return flow(s, t, std::numeric_limits<Cap>::max()); }
    std::pair<Cap, Cost> flow(int s, int t, Cap flow_limit) { return slope(s, t, flow_limit).back(); }
    std::vector<std::pair<Cap, Cost>> slope(int s, int t) { return slope(s, t, std::numeric_limits<Cap>::max()); }
    std::vector<std::pair<Cap, Cost>> slope(int s, int t, Cap flow_limit) {
        assert(0 <= s && s < _n);
        assert(0 <= t && t < _n);
        assert(s != t);
        int m = int(_edges.size());
        std::vector<int> edge_idx(m);
        auto g = [&]() {
            std::vector<int> degree(_n), redge_idx(m);
            std::vector<std::pair<int, _edge>> elist;
            elist.reserve(2 * m);
            for (int i = 0; i < m; ++i) {
                auto e = _edges[i];
                edge_idx[i] = degree[e.from]++;
                redge_idx[i] = degree[e.to]++;
                elist.emplace_back(e.from, _edge(e.to, -1, e.cap - e.flow, e.cost));
                elist.emplace_back(e.to, _edge(e.from, -1, e.flow, -e.cost));
            }
            auto _g = internal::csr<_edge>(_n, elist);
            for (int i = 0; i < m; ++i) {
                auto e = _edges[i];
                edge_idx[i] += _g.start[e.from];
                redge_idx[i] += _g.start[e.to];
                _g.elist[edge_idx[i]].rev = redge_idx[i];
                _g.elist[redge_idx[i]].rev = edge_idx[i];
            }
            return _g;
        }();
        auto result = slope(g, s, t, flow_limit);
        for (int i = 0; i < m; i++) {
            auto e = g.elist[edge_idx[i]];
            _edges[i].flow = _edges[i].cap - e.cap;
        }
        return result;
    }
  private:
    int _n;
    std::vector<edge> _edges;
    struct _edge {
        int to, rev;
        Cap cap;
        Cost cost;
        constexpr _edge() : to(), rev(), cap(), cost() {}
        constexpr _edge(int _to, int _rev, Cap _cap, Cost _cost) : to(_to), rev(_rev), cap(_cap), cost(_cost) {}
    };
    std::vector<std::pair<Cap, Cost>> slope(internal::csr<_edge> &g, int s, int t, Cap flow_limit) {
        std::vector<std::pair<Cost, Cost>> dual_dist(_n);
        std::vector<int> prev_e(_n);
        std::vector<bool> vis(_n);
        struct Q {
            Cost key;
            int to;
            constexpr Q(Cost _key, int _to) : key(_key), to(_to) {}
            constexpr bool operator<(Q r) const { return key > r.key; }
        };
        std::vector<int> que_min;
        std::vector<Q> que;
        auto dual_ref = [&]() {
            for (int i = 0; i < _n; ++i) dual_dist[i].second = std::numeric_limits<Cost>::max();
            std::fill(vis.begin(), vis.end(), false);
            que_min.clear();
            que.clear();
            size_t heap_r = 0;
            dual_dist[s].second = 0;
            que_min.emplace_back(s);
            while (!que_min.empty() || !que.empty()) {
                int v;
                if (!que_min.empty()) {
                    v = que_min.back();
                    que_min.pop_back();
                } else {
                    while (heap_r < que.size()) {
                        ++heap_r;
                        std::push_heap(que.begin(), que.begin() + heap_r);
                    }
                    v = que.front().to;
                    std::pop_heap(que.begin(), que.end());
                    que.pop_back();
                    --heap_r;
                }
                if (vis[v]) continue;
                vis[v] = true;
                if (v == t) break;
                Cost dual_v = dual_dist[v].first, dist_v = dual_dist[v].second;
                for (int i = g.start[v]; i < g.start[v + 1]; ++i) {
                    auto e = g.elist[i];
                    if (!e.cap) continue;
                    Cost cost = e.cost - dual_dist[e.to].first + dual_v;
                    if (dual_dist[e.to].second - dist_v > cost) {
                        Cost dist_to = dist_v + cost;
                        dual_dist[e.to].second = dist_to;
                        prev_e[e.to] = e.rev;
                        if (dist_to == dist_v) que_min.emplace_back(e.to);
                        else que.emplace_back(dist_to, e.to);
                    }
                }
            }
            if (!vis[t]) return false;
            for (int v = 0; v < _n; ++v) {
                if (!vis[v]) continue;
                dual_dist[v].first -= dual_dist[t].second - dual_dist[v].second;
            }
            return true;
        };
        Cap flow = 0;
        Cost cost = 0, prev_cost_per_flow = -1;
        std::vector<std::pair<Cap, Cost>> result = {{Cap(0), Cost(0)}};
        while (flow < flow_limit) {
            if (!dual_ref()) break;
            Cap c = flow_limit - flow;
            for (int v = t; v != s; v = g.elist[prev_e[v]].to) c = std::min(c, g.elist[g.elist[prev_e[v]].rev].cap);
            for (int v = t; v != s; v = g.elist[prev_e[v]].to) {
                auto &e = g.elist[prev_e[v]];
                e.cap += c;
                g.elist[e.rev].cap -= c;
            }
            Cost d = -dual_dist[s].first;
            flow += c;
            cost += c * d;
            if (prev_cost_per_flow == d) result.pop_back();
            result.emplace_back(flow, cost);
            prev_cost_per_flow = d;
        }
        return result;
    }
};
#include <locale>
#include <string>
struct string_converter {
    char type(const char &c) const {
        return (std::islower(c) ? 'a' : std::isupper(c) ? 'A' : std::isdigit(c) ? '0' : 0);
    }
    int convert(const char &c) {
        if (!start) start = type(c);
        return c - start;
    }
    int convert(const char &c, const std::string &chars) { return chars.find(c); }
    template <typename T>
    auto convert(const T &v) {
        std::vector<decltype(convert(v[0]))> res;
        res.reserve(v.size());
        for (auto &&e : v) res.emplace_back(convert(e));
        return res;
    }
    template <typename T>
    auto convert(const T &v, const std::string &chars) {
        std::vector<decltype(convert(v[0], chars))> res;
        res.reserve(v.size());
        for (auto &&e : v) res.emplace_back(convert(e, chars));
        return res;
    }
    int operator()(const char &v, char s = 0) {
        start = s;
        return convert(v);
    }
    int operator()(const char &v, const std::string &chars) { return convert(v, chars); }
    template <typename T>
    auto operator()(const T &v, char s = 0) {
        start = s;
        return convert(v);
    }
    template <typename T>
    auto operator()(const T &v, const std::string &chars) {
        return convert(v, chars);
    }
  private:
    char start = 0;
} to_int;
#ifdef ATCODER
#pragma GCC target("sse4.2,avx512f,avx512dq,avx512ifma,avx512cd,avx512bw,avx512vl,bmi2")
#endif
#pragma GCC optimize("Ofast,fast-math,unroll-all-loops")
#include <bits/stdc++.h>
#ifndef ATCODER
#pragma GCC target("sse4.2,avx2,bmi2")
#endif
template <class T, class U>
constexpr bool chmax(T &a, const U &b) {
    return a < (T)b ? a = (T)b, true : false;
}
template <class T, class U>
constexpr bool chmin(T &a, const U &b) {
    return (T)b < a ? a = (T)b, true : false;
}
constexpr std::int64_t INF = 1000000000000000003;
constexpr int Inf = 1000000003;
constexpr double EPS = 1e-7;
constexpr double PI = 3.14159265358979323846;
#define FOR(i, m, n) for (int i = (m); i < int(n); ++i)
#define FORR(i, m, n) for (int i = (m)-1; i >= int(n); --i)
#define FORL(i, m, n) for (int64_t i = (m); i < int64_t(n); ++i)
#define rep(i, n) FOR (i, 0, n)
#define repn(i, n) FOR (i, 1, n + 1)
#define repr(i, n) FORR (i, n, 0)
#define repnr(i, n) FORR (i, n + 1, 1)
#define all(s) (s).begin(), (s).end()
struct Sonic {
    Sonic() {
        std::ios::sync_with_stdio(false);
        std::cin.tie(nullptr);
        std::cout << std::fixed << std::setprecision(20);
    }
    constexpr void operator()() const {}
} sonic;
using namespace std;
using ll = std::int64_t;
using ld = long double;
template <class T, class U>
std::istream &operator>>(std::istream &is, std::pair<T, U> &p) {
    return is >> p.first >> p.second;
}
template <class T>
std::istream &operator>>(std::istream &is, std::vector<T> &v) {
    for (T &i : v) is >> i;
    return is;
}
template <class T, class U>
std::ostream &operator<<(std::ostream &os, const std::pair<T, U> &p) {
    return os << '(' << p.first << ',' << p.second << ')';
}
template <class T>
std::ostream &operator<<(std::ostream &os, const std::vector<T> &v) {
    for (auto it = v.begin(); it != v.end(); ++it) os << (it == v.begin() ? "" : " ") << *it;
    return os;
}
template <class Head, class... Tail>
void co(Head &&head, Tail &&...tail) {
    if constexpr (sizeof...(tail) == 0) std::cout << head << '\n';
    else std::cout << head << ' ', co(std::forward<Tail>(tail)...);
}
template <class Head, class... Tail>
void ce(Head &&head, Tail &&...tail) {
    if constexpr (sizeof...(tail) == 0) std::cerr << head << '\n';
    else std::cerr << head << ' ', ce(std::forward<Tail>(tail)...);
}
void Yes(bool is_correct = true) { std::cout << (is_correct ? "Yes\n" : "No\n"); }
void No(bool is_not_correct = true) { Yes(!is_not_correct); }
void YES(bool is_correct = true) { std::cout << (is_correct ? "YES\n" : "NO\n"); }
void NO(bool is_not_correct = true) { YES(!is_not_correct); }
void Takahashi(bool is_correct = true) { std::cout << (is_correct ? "Takahashi" : "Aoki") << '\n'; }
void Aoki(bool is_not_correct = true) { Takahashi(!is_not_correct); }
int main(void) {
    int n;
    cin >> n;
    string s;
    cin >> s;
    vector<int> a(n);
    cin >> a;
    auto v = to_int(s, "yuki");
    vector u(4, vector<int>());
    rep (i, n) {
        u[v[i]].emplace_back(i);
    }
    mcf_graph<int, ll> mcf(n + 2);
    int st = n, gl = n + 1;
    if (u[0].empty()) {
        co(0);
        return 0;
    }
    mcf.add_edge(st, u[0][0], Inf, 0);
    rep (i, 4) {
        rep (j, u[i].size()) {
            if (i < 3) {
                auto it = lower_bound(all(u[i + 1]), u[i][j]);
                if (it == u[i + 1].end())
                    continue;
                mcf.add_edge(u[i][j], *it, 1, Inf - a[u[i][j]]);
            } else {
                mcf.add_edge(u[i][j], gl, 1, Inf - a[u[i][j]]);
            }
            if (j < (int)u[i].size() - 1) {
                mcf.add_edge(u[i][j], u[i][j + 1], Inf, 0);
            }
        }
    }
    auto p = mcf.slope(st, gl);
    ll ans = 0;
    for (auto [l, r] : p) {
        chmax(ans, (ll)l * 4 * Inf - r);
    }
    co(ans);
    return 0;
}
0