結果
| 問題 |
No.3164 [Chery 7th Tune B] La vie en rose
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-05-30 21:29:08 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 585 ms / 2,000 ms |
| コード長 | 14,787 bytes |
| コンパイル時間 | 3,339 ms |
| コンパイル使用メモリ | 294,264 KB |
| 実行使用メモリ | 10,044 KB |
| 最終ジャッジ日時 | 2025-05-30 21:29:29 |
| 合計ジャッジ時間 | 20,761 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 34 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define pii pair<int, int>
#define pll pair<ll, ll>
#define vi vector<int>
#define vl vector<ll>
#define ov4(a, b, c, d, name, ...) name
#define rep3(i, a, b, c) for(ll i = (a); i < (b); i += (c))
#define rep2(i, a, b) rep3(i, a, b, 1)
#define rep1(i, n) rep2(i, 0, n)
#define rep0(n) rep1(aaaaa, n)
#define rep(...) ov4(__VA_ARGS__, rep3, rep2, rep1, rep0)(__VA_ARGS__)
#define per(i, a, b) for(ll i = (a)-1; i >= (b); i--)
#define fore(e, v) for(auto&& e : v)
#define all(a) begin(a), end(a)
#define sz(a) (int)(size(a))
#define lb(v, x) (lower_bound(all(v), x) - begin(v))
#define eb emplace_back
template<typename T, typename S> bool chmin(T& a, const S& b) { return a > b ? a = b, 1 : 0; }
template<typename T, typename S> bool chmax(T& a, const S& b) { return a < b ? a = b, 1 : 0; }
const int INF = 1e9 + 100;
const ll INFL = 3e18 + 100;
#define i128 __int128_t
struct _ {
_() { cin.tie(0)->sync_with_stdio(0), cout.tie(0); }
} __;
template<typename T, typename S>
istream& operator>>(istream& is, pair<T, S>& p) {
return is >> p.first >> p.second;
}
template<typename T, typename S>
istream& operator<<(istream& is, pair<T, S>& p) {
return is << p.first << p.second;
}
template<typename T>
pair<T, T> operator+(pair<T, T> a, pair<T, T> b) {
return {a.first + b.first, a.second + b.second};
}
struct hld_tree {
int n, root;
std::vector<int> down, nxt, sub, tour;
// noya2::internal::csr<int> childs;
// default constructor (nop)
hld_tree () {}
// tree with _n node
// after construct, call input_edges / input_parents / add_edge _n - 1 times
hld_tree (int _n, int _root = 0) : n(_n), root(_root), down(n), nxt(n), sub(n, 1), tour(n) {
if (n == 1){
nxt[0] = -1;
down[0] = -1;
build_from_parents();
}
}
// par[i] < i, par[0] == -1
hld_tree (const std::vector<int> &par) : n(par.size()), root(0), down(n, -1), nxt(par), sub(n, 1), tour(n){
build_from_parents();
}
// par[i] < i, par[0] == -1
hld_tree (std::vector<int> &&par) : n(par.size()), root(0), down(n, -1), sub(n, 1), tour(n) {
nxt.swap(par);
build_from_parents();
}
// distinct unweighted undirected n - 1 edges of tree
hld_tree (const std::vector<std::pair<int, int>> &es, int _root = 0) : n(es.size() + 1), root(_root), down(n), nxt(n), sub(n, 1), tour(n) {
for (auto &[u, v] : es){
down[u]++;
down[v]++;
nxt[u] ^= v;
nxt[v] ^= u;
}
build_from_edges();
}
// input parents from cin
template<int indexed = 1>
void input_parents(){
// using std::cin;
nxt[0] = -1;
down[0] = -1;
for (int u = 1; u < n; u++){
cin >> nxt[u];
nxt[u] -= indexed;
down[u] = -1;
}
build_from_parents();
}
// input n - 1 edges from cin
template<int indexed = 1>
void input_edges(){
// using std::cin;
for (int i = 1; i < n; i++){
int u, v; cin >> u >> v;
u -= indexed;
v -= indexed;
down[u]++;
down[v]++;
nxt[u] ^= v;
nxt[v] ^= u;
}
build_from_edges();
}
void add_edge(int u, int v){
down[u]++;
down[v]++;
nxt[u] ^= v;
nxt[v] ^= u;
// use tour[0] as counter
if (++tour[0] == n - 1){
build_from_edges();
}
}
size_t size() const {
return n;
}
// top vertex of heavy path which contains v
int leader(int v) const {
return nxt[v] < 0 ? v : nxt[v];
}
// level ancestor
// ret is ancestor of v, dist(ret, v) == d
// if d > depth(v), return -1
int la(int v, int d) const {
while (v != -1){
int u = leader(v);
if (down[v] - d >= down[u]){
v = tour[down[v] - d];
break;
}
d -= down[v] - down[u] + 1;
v = (u == root ? -1 : ~nxt[u]);
}
return v;
}
// lowest common ancestor of u and v
int lca(int u, int v) const {
int du = down[u], dv = down[v];
if (du > dv){
std::swap(du, dv);
std::swap(u, v);
}
if (dv < du + sub[u]){
return u;
}
while (du < dv){
v = ~nxt[leader(v)];
dv = down[v];
}
return v;
}
// distance from u to v
int dist(int u, int v) const {
int _dist = 0;
while (leader(u) != leader(v)){
if (down[u] > down[v]) std::swap(u, v);
_dist += down[v] - down[leader(v)] + 1;
v = ~nxt[leader(v)];
}
_dist += std::abs(down[u] - down[v]);
return _dist;
}
// d times move from to its neighbor (direction of to)
// if d > dist(from, to), return -1
int jump(int from, int to, int d) const {
int _from = from, _to = to;
int dist_from_lca = 0, dist_to_lca = 0;
while (leader(_from) != leader(_to)){
if (down[_from] > down[_to]){
dist_from_lca += down[_from] - down[leader(_from)] + 1;
_from = ~nxt[leader(_from)];
}
else {
dist_to_lca += down[_to] - down[leader(_to)] + 1;
_to = ~nxt[leader(_to)];
}
}
if (down[_from] > down[_to]){
dist_from_lca += down[_from] - down[_to];
}
else {
dist_to_lca += down[_to] - down[_from];
}
if (d <= dist_from_lca){
return la(from, d);
}
d -= dist_from_lca;
if (d <= dist_to_lca){
return la(to, dist_to_lca - d);
}
return -1;
}
// parent of v (if v is root, return -1)
int parent(int v) const {
if (v == root) return -1;
return (nxt[v] < 0 ? ~nxt[v] : tour[down[v] - 1]);
}
// visiting time in euler tour
// usage : seg.set(index(v), X[v])
int index(int vertex) const {
return down[vertex];
}
// usage : seg.set(index_edge(e.u, e.v), e.val)
int index(int vertex1, int vertex2) const {
return std::max(down[vertex1], down[vertex2]);
}
// subtree size of v
int subtree_size(int v) const {
return sub[v];
}
// prod in subtree v : seg.prod(subtree_l(v), subtree_r(v))
int subtree_l(int v) const {
return down[v];
}
int subtree_r(int v) const {
return down[v] + sub[v];
}
// v is in subtree r
bool is_in_subtree(int r, int v) const {
return subtree_l(r) <= subtree_l(v) && subtree_r(v) <= subtree_r(r);
}
// distance table from s
std::vector<int> dist_table(int s) const {
std::vector<int> table(n, -1);
table[s] = 0;
while (s != root){
table[parent(s)] = table[s] + 1;
s = parent(s);
}
for (int v : tour){
if (table[v] == -1){
table[v] = table[parent(v)] + 1;
}
}
return table;
}
// dist, v1, v2
std::tuple<int, int, int> diameter() const {
std::vector<int> dep = dist_table(root);
int v1 = std::ranges::max_element(dep) - dep.begin();
std::vector<int> fromv1 = dist_table(v1);
int v2 = std::ranges::max_element(fromv1) - fromv1.begin();
return {fromv1[v2], v1, v2};
}
// vertex array {from, ..., to}
std::vector<int> path(int from, int to) const {
int d = dist(from, to);
std::vector<int> _path(d + 1);
int front = 0, back = d;
while (from != to){
if (down[from] > down[to]){
_path[front++] = from;
from = parent(from);
}
else {
_path[back--] = to;
to = parent(to);
}
}
_path[front] = from;
return _path;
}
// path decomposition and query (vertex weighted)
// if l < r, decsending order tour[l, r)
// if l > r, acsending order tour(l, r]
template<bool vertex = true>
void path_query(int u, int v, auto f) const {
while (leader(u) != leader(v)){
if (down[u] < down[v]){
f(down[leader(v)], down[v] + 1);
v = ~nxt[leader(v)];
}
else {
f(down[u] + 1, down[leader(u)]);
u = ~nxt[leader(u)];
}
}
if constexpr (vertex){
if (down[u] < down[v]){
f(down[u], down[v] + 1);
}
else {
f(down[u] + 1, down[v]);
}
}
else {
if (down[u] != down[v]){
f(down[u] + 1, down[v] + 1);
}
}
}
// {parent, mapping} : cptree i is correspond to tree mapping[i]. parent[i] is parent of i in cptree.
// parent[i] < i, parent[0] == -1
std::pair<std::vector<int>, std::vector<int>> compressed_tree(std::vector<int> vs) const {
if (vs.empty()){
return {{},{}};
}
auto comp = [&](int l, int r){
return down[l] < down[r];
};
std::ranges::sort(vs, comp);
int sz = vs.size(); vs.reserve(2*sz);
for (int i = 0; i < sz-1; i++){
vs.emplace_back(lca(vs[i], vs[i+1]));
}
std::sort(vs.begin() + sz, vs.end(), comp);
std::ranges::inplace_merge(vs, vs.begin() + sz, comp);
auto del = std::ranges::unique(vs);
vs.erase(del.begin(), del.end());
sz = vs.size();
std::stack<int> st;
std::vector<int> par(sz);
par[0] = -1;
st.push(0);
for (int i = 1; i < sz; i++){
while (!is_in_subtree(vs[st.top()], vs[i])) st.pop();
par[i] = st.top();
st.push(i);
}
return {par, vs};
}
/* CSR
// build csr for using operator()
void build_csr(){
childs = noya2::internal::csr<int>(n, n - 1);
for (int v = 0; v < n; v++){
if (v == root) continue;
childs.add(parent(v), v);
}
childs.build();
}
const auto operator()(int v) const {
return childs[v];
}
auto operator()(int v){
return childs[v];
}
*/
// hld_tree g;
// euler tour order : `for (int v : g)`
// with range_adaptor : `for (int v : g | std::views::reverse)`
// bottom-up DP : `for (int v : g | std::views::drop(1) | std::views::reverse){ update dp[g.parent(v)] by dp[v] }`
auto begin() const {
return tour.begin();
}
auto end() const {
return tour.end();
}
private:
// nxt[v] : parent of v, nxt[0] == -1
void build_from_parents(){
for (int u = n - 1; u >= 1; u--){
int v = nxt[u];
sub[v] += sub[u];
down[v] = std::max(down[v], sub[u]);
}
for (int u = n - 1; u >= 1; u--){
int v = nxt[u];
if (down[v] == sub[u]){
sub[u] = ~sub[u];
down[v] = ~down[v];
}
}
sub[0] = ~down[0] + 1;
down[0] = 0;
for (int u = 1; u < n; u++){
int v = nxt[u];
int nsub = ~down[u] + 1;
if (sub[u] < 0){
down[u] = down[v] + 1;
nxt[u] = (nxt[v] < 0 ? v : nxt[v]);
}
else {
down[u] = down[v] + sub[v];
sub[v] += sub[u];
nxt[u] = ~v;
}
sub[u] = nsub;
}
for (int u = 0; u < n; u++){
tour[down[u]] = u;
}
}
// down[v] : degree of v
// nxt[v] : xor prod of neighbor of v
void build_from_edges(){
// use tour as queue
int back = 0;
for (int u = 0; u < n; u++){
if (u != root && down[u] == 1){
tour[back++] = u;
}
}
for (int front = 0; front < n - 1; front++){
int u = tour[front];
down[u] = -1;
int v = nxt[u]; // parent of v
nxt[v] ^= u;
if (--down[v] == 1 && v != root){
tour[back++] = v;
}
}
// check : now, tour is reverse of topological order
tour.pop_back();
// check : now, down[*] <= 1
for (int u : tour){
int v = nxt[u];
// subtree size (initialized (1,1,...,1))
sub[v] += sub[u];
// heaviest subtree of its child
down[v] = std::max(down[v], sub[u]);
}
for (int u : tour){
int v = nxt[u];
// whether u is not the top of heavy path
if (down[v] == sub[u]){
sub[u] = ~sub[u];
down[v] = ~down[v];
}
}
// after appearing v as u (or v == root),
// down[v] is the visiting time of euler tour
// nxt[v] is the lowest vertex of heavy path which contains v
// (if v itself, nxt[v] is ~(parent of v))
// sub[v] + down[v] is the light child's starting time of euler tour
// note : heavy child's visiting time of euler tour is (the time of its parent) + 1
sub[root] = ~down[root] + 1;
down[root] = 0;
nxt[root] = -1;
for (int u : tour | std::views::reverse){
int v = nxt[u];
int nsub = ~down[u] + 1;
// heavy child
if (sub[u] < 0){
down[u] = down[v] + 1;
nxt[u] = (nxt[v] < 0 ? v : nxt[v]);
}
// light child
else {
down[u] = down[v] + sub[v];
sub[v] += sub[u];
nxt[u] = ~v;
}
sub[u] = nsub;
}
// tour is inverse permutation of down
tour.push_back(0);
for (int u = 0; u < n; u++){
tour[down[u]] = u;
}
}
};
void debug(auto ...vs) {
((cerr << vs << " "), ...) << endl;
}
#include<atcoder/dsu.hpp>
void solve() {
int n;cin >> n;
vl a(n);rep(i, n) cin >> a[i];
vl rui(n +1, 0);
vi f;
f.emplace_back(-1);
rep(i, n) {
rui[i+1] = rui[i] + a[i];
if (a[i] == 0) f.emplace_back(i);
}
f.emplace_back(n);
int q;cin >> q;
rep(q) {
int x, b;cin >> x >> b;
x--;
int r = lower_bound(all(f), x+1) - f.begin();
int l = lower_bound(all(f), x) - f.begin() - 1;
cout << rui[x] - rui[f[l] + 1] + (rui[f[r]] - rui[x+1]) + b << endl;
}
}
int main() {
// int T;cin >> T;
int T = 1;
while(T--) {
solve();
}
}