結果
問題 |
No.3164 [Chery 7th Tune B] La vie en rose
|
ユーザー |
|
提出日時 | 2025-05-30 21:29:08 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 585 ms / 2,000 ms |
コード長 | 14,787 bytes |
コンパイル時間 | 3,339 ms |
コンパイル使用メモリ | 294,264 KB |
実行使用メモリ | 10,044 KB |
最終ジャッジ日時 | 2025-05-30 21:29:29 |
合計ジャッジ時間 | 20,761 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 34 |
ソースコード
#include <bits/stdc++.h> using namespace std; #define ll long long #define pii pair<int, int> #define pll pair<ll, ll> #define vi vector<int> #define vl vector<ll> #define ov4(a, b, c, d, name, ...) name #define rep3(i, a, b, c) for(ll i = (a); i < (b); i += (c)) #define rep2(i, a, b) rep3(i, a, b, 1) #define rep1(i, n) rep2(i, 0, n) #define rep0(n) rep1(aaaaa, n) #define rep(...) ov4(__VA_ARGS__, rep3, rep2, rep1, rep0)(__VA_ARGS__) #define per(i, a, b) for(ll i = (a)-1; i >= (b); i--) #define fore(e, v) for(auto&& e : v) #define all(a) begin(a), end(a) #define sz(a) (int)(size(a)) #define lb(v, x) (lower_bound(all(v), x) - begin(v)) #define eb emplace_back template<typename T, typename S> bool chmin(T& a, const S& b) { return a > b ? a = b, 1 : 0; } template<typename T, typename S> bool chmax(T& a, const S& b) { return a < b ? a = b, 1 : 0; } const int INF = 1e9 + 100; const ll INFL = 3e18 + 100; #define i128 __int128_t struct _ { _() { cin.tie(0)->sync_with_stdio(0), cout.tie(0); } } __; template<typename T, typename S> istream& operator>>(istream& is, pair<T, S>& p) { return is >> p.first >> p.second; } template<typename T, typename S> istream& operator<<(istream& is, pair<T, S>& p) { return is << p.first << p.second; } template<typename T> pair<T, T> operator+(pair<T, T> a, pair<T, T> b) { return {a.first + b.first, a.second + b.second}; } struct hld_tree { int n, root; std::vector<int> down, nxt, sub, tour; // noya2::internal::csr<int> childs; // default constructor (nop) hld_tree () {} // tree with _n node // after construct, call input_edges / input_parents / add_edge _n - 1 times hld_tree (int _n, int _root = 0) : n(_n), root(_root), down(n), nxt(n), sub(n, 1), tour(n) { if (n == 1){ nxt[0] = -1; down[0] = -1; build_from_parents(); } } // par[i] < i, par[0] == -1 hld_tree (const std::vector<int> &par) : n(par.size()), root(0), down(n, -1), nxt(par), sub(n, 1), tour(n){ build_from_parents(); } // par[i] < i, par[0] == -1 hld_tree (std::vector<int> &&par) : n(par.size()), root(0), down(n, -1), sub(n, 1), tour(n) { nxt.swap(par); build_from_parents(); } // distinct unweighted undirected n - 1 edges of tree hld_tree (const std::vector<std::pair<int, int>> &es, int _root = 0) : n(es.size() + 1), root(_root), down(n), nxt(n), sub(n, 1), tour(n) { for (auto &[u, v] : es){ down[u]++; down[v]++; nxt[u] ^= v; nxt[v] ^= u; } build_from_edges(); } // input parents from cin template<int indexed = 1> void input_parents(){ // using std::cin; nxt[0] = -1; down[0] = -1; for (int u = 1; u < n; u++){ cin >> nxt[u]; nxt[u] -= indexed; down[u] = -1; } build_from_parents(); } // input n - 1 edges from cin template<int indexed = 1> void input_edges(){ // using std::cin; for (int i = 1; i < n; i++){ int u, v; cin >> u >> v; u -= indexed; v -= indexed; down[u]++; down[v]++; nxt[u] ^= v; nxt[v] ^= u; } build_from_edges(); } void add_edge(int u, int v){ down[u]++; down[v]++; nxt[u] ^= v; nxt[v] ^= u; // use tour[0] as counter if (++tour[0] == n - 1){ build_from_edges(); } } size_t size() const { return n; } // top vertex of heavy path which contains v int leader(int v) const { return nxt[v] < 0 ? v : nxt[v]; } // level ancestor // ret is ancestor of v, dist(ret, v) == d // if d > depth(v), return -1 int la(int v, int d) const { while (v != -1){ int u = leader(v); if (down[v] - d >= down[u]){ v = tour[down[v] - d]; break; } d -= down[v] - down[u] + 1; v = (u == root ? -1 : ~nxt[u]); } return v; } // lowest common ancestor of u and v int lca(int u, int v) const { int du = down[u], dv = down[v]; if (du > dv){ std::swap(du, dv); std::swap(u, v); } if (dv < du + sub[u]){ return u; } while (du < dv){ v = ~nxt[leader(v)]; dv = down[v]; } return v; } // distance from u to v int dist(int u, int v) const { int _dist = 0; while (leader(u) != leader(v)){ if (down[u] > down[v]) std::swap(u, v); _dist += down[v] - down[leader(v)] + 1; v = ~nxt[leader(v)]; } _dist += std::abs(down[u] - down[v]); return _dist; } // d times move from to its neighbor (direction of to) // if d > dist(from, to), return -1 int jump(int from, int to, int d) const { int _from = from, _to = to; int dist_from_lca = 0, dist_to_lca = 0; while (leader(_from) != leader(_to)){ if (down[_from] > down[_to]){ dist_from_lca += down[_from] - down[leader(_from)] + 1; _from = ~nxt[leader(_from)]; } else { dist_to_lca += down[_to] - down[leader(_to)] + 1; _to = ~nxt[leader(_to)]; } } if (down[_from] > down[_to]){ dist_from_lca += down[_from] - down[_to]; } else { dist_to_lca += down[_to] - down[_from]; } if (d <= dist_from_lca){ return la(from, d); } d -= dist_from_lca; if (d <= dist_to_lca){ return la(to, dist_to_lca - d); } return -1; } // parent of v (if v is root, return -1) int parent(int v) const { if (v == root) return -1; return (nxt[v] < 0 ? ~nxt[v] : tour[down[v] - 1]); } // visiting time in euler tour // usage : seg.set(index(v), X[v]) int index(int vertex) const { return down[vertex]; } // usage : seg.set(index_edge(e.u, e.v), e.val) int index(int vertex1, int vertex2) const { return std::max(down[vertex1], down[vertex2]); } // subtree size of v int subtree_size(int v) const { return sub[v]; } // prod in subtree v : seg.prod(subtree_l(v), subtree_r(v)) int subtree_l(int v) const { return down[v]; } int subtree_r(int v) const { return down[v] + sub[v]; } // v is in subtree r bool is_in_subtree(int r, int v) const { return subtree_l(r) <= subtree_l(v) && subtree_r(v) <= subtree_r(r); } // distance table from s std::vector<int> dist_table(int s) const { std::vector<int> table(n, -1); table[s] = 0; while (s != root){ table[parent(s)] = table[s] + 1; s = parent(s); } for (int v : tour){ if (table[v] == -1){ table[v] = table[parent(v)] + 1; } } return table; } // dist, v1, v2 std::tuple<int, int, int> diameter() const { std::vector<int> dep = dist_table(root); int v1 = std::ranges::max_element(dep) - dep.begin(); std::vector<int> fromv1 = dist_table(v1); int v2 = std::ranges::max_element(fromv1) - fromv1.begin(); return {fromv1[v2], v1, v2}; } // vertex array {from, ..., to} std::vector<int> path(int from, int to) const { int d = dist(from, to); std::vector<int> _path(d + 1); int front = 0, back = d; while (from != to){ if (down[from] > down[to]){ _path[front++] = from; from = parent(from); } else { _path[back--] = to; to = parent(to); } } _path[front] = from; return _path; } // path decomposition and query (vertex weighted) // if l < r, decsending order tour[l, r) // if l > r, acsending order tour(l, r] template<bool vertex = true> void path_query(int u, int v, auto f) const { while (leader(u) != leader(v)){ if (down[u] < down[v]){ f(down[leader(v)], down[v] + 1); v = ~nxt[leader(v)]; } else { f(down[u] + 1, down[leader(u)]); u = ~nxt[leader(u)]; } } if constexpr (vertex){ if (down[u] < down[v]){ f(down[u], down[v] + 1); } else { f(down[u] + 1, down[v]); } } else { if (down[u] != down[v]){ f(down[u] + 1, down[v] + 1); } } } // {parent, mapping} : cptree i is correspond to tree mapping[i]. parent[i] is parent of i in cptree. // parent[i] < i, parent[0] == -1 std::pair<std::vector<int>, std::vector<int>> compressed_tree(std::vector<int> vs) const { if (vs.empty()){ return {{},{}}; } auto comp = [&](int l, int r){ return down[l] < down[r]; }; std::ranges::sort(vs, comp); int sz = vs.size(); vs.reserve(2*sz); for (int i = 0; i < sz-1; i++){ vs.emplace_back(lca(vs[i], vs[i+1])); } std::sort(vs.begin() + sz, vs.end(), comp); std::ranges::inplace_merge(vs, vs.begin() + sz, comp); auto del = std::ranges::unique(vs); vs.erase(del.begin(), del.end()); sz = vs.size(); std::stack<int> st; std::vector<int> par(sz); par[0] = -1; st.push(0); for (int i = 1; i < sz; i++){ while (!is_in_subtree(vs[st.top()], vs[i])) st.pop(); par[i] = st.top(); st.push(i); } return {par, vs}; } /* CSR // build csr for using operator() void build_csr(){ childs = noya2::internal::csr<int>(n, n - 1); for (int v = 0; v < n; v++){ if (v == root) continue; childs.add(parent(v), v); } childs.build(); } const auto operator()(int v) const { return childs[v]; } auto operator()(int v){ return childs[v]; } */ // hld_tree g; // euler tour order : `for (int v : g)` // with range_adaptor : `for (int v : g | std::views::reverse)` // bottom-up DP : `for (int v : g | std::views::drop(1) | std::views::reverse){ update dp[g.parent(v)] by dp[v] }` auto begin() const { return tour.begin(); } auto end() const { return tour.end(); } private: // nxt[v] : parent of v, nxt[0] == -1 void build_from_parents(){ for (int u = n - 1; u >= 1; u--){ int v = nxt[u]; sub[v] += sub[u]; down[v] = std::max(down[v], sub[u]); } for (int u = n - 1; u >= 1; u--){ int v = nxt[u]; if (down[v] == sub[u]){ sub[u] = ~sub[u]; down[v] = ~down[v]; } } sub[0] = ~down[0] + 1; down[0] = 0; for (int u = 1; u < n; u++){ int v = nxt[u]; int nsub = ~down[u] + 1; if (sub[u] < 0){ down[u] = down[v] + 1; nxt[u] = (nxt[v] < 0 ? v : nxt[v]); } else { down[u] = down[v] + sub[v]; sub[v] += sub[u]; nxt[u] = ~v; } sub[u] = nsub; } for (int u = 0; u < n; u++){ tour[down[u]] = u; } } // down[v] : degree of v // nxt[v] : xor prod of neighbor of v void build_from_edges(){ // use tour as queue int back = 0; for (int u = 0; u < n; u++){ if (u != root && down[u] == 1){ tour[back++] = u; } } for (int front = 0; front < n - 1; front++){ int u = tour[front]; down[u] = -1; int v = nxt[u]; // parent of v nxt[v] ^= u; if (--down[v] == 1 && v != root){ tour[back++] = v; } } // check : now, tour is reverse of topological order tour.pop_back(); // check : now, down[*] <= 1 for (int u : tour){ int v = nxt[u]; // subtree size (initialized (1,1,...,1)) sub[v] += sub[u]; // heaviest subtree of its child down[v] = std::max(down[v], sub[u]); } for (int u : tour){ int v = nxt[u]; // whether u is not the top of heavy path if (down[v] == sub[u]){ sub[u] = ~sub[u]; down[v] = ~down[v]; } } // after appearing v as u (or v == root), // down[v] is the visiting time of euler tour // nxt[v] is the lowest vertex of heavy path which contains v // (if v itself, nxt[v] is ~(parent of v)) // sub[v] + down[v] is the light child's starting time of euler tour // note : heavy child's visiting time of euler tour is (the time of its parent) + 1 sub[root] = ~down[root] + 1; down[root] = 0; nxt[root] = -1; for (int u : tour | std::views::reverse){ int v = nxt[u]; int nsub = ~down[u] + 1; // heavy child if (sub[u] < 0){ down[u] = down[v] + 1; nxt[u] = (nxt[v] < 0 ? v : nxt[v]); } // light child else { down[u] = down[v] + sub[v]; sub[v] += sub[u]; nxt[u] = ~v; } sub[u] = nsub; } // tour is inverse permutation of down tour.push_back(0); for (int u = 0; u < n; u++){ tour[down[u]] = u; } } }; void debug(auto ...vs) { ((cerr << vs << " "), ...) << endl; } #include<atcoder/dsu.hpp> void solve() { int n;cin >> n; vl a(n);rep(i, n) cin >> a[i]; vl rui(n +1, 0); vi f; f.emplace_back(-1); rep(i, n) { rui[i+1] = rui[i] + a[i]; if (a[i] == 0) f.emplace_back(i); } f.emplace_back(n); int q;cin >> q; rep(q) { int x, b;cin >> x >> b; x--; int r = lower_bound(all(f), x+1) - f.begin(); int l = lower_bound(all(f), x) - f.begin() - 1; cout << rui[x] - rui[f[l] + 1] + (rui[f[r]] - rui[x+1]) + b << endl; } } int main() { // int T;cin >> T; int T = 1; while(T--) { solve(); } }