結果

問題 No.3167 [Cherry 7th Tune C] Cut in Queue
ユーザー detteiuu
提出日時 2025-06-01 16:45:08
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 1,335 ms / 2,500 ms
コード長 3,904 bytes
コンパイル時間 414 ms
コンパイル使用メモリ 82,176 KB
実行使用メモリ 281,428 KB
最終ジャッジ日時 2025-06-01 16:45:52
合計ジャッジ時間 43,480 ms
ジャッジサーバーID
(参考情報)
judge1 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 43
権限があれば一括ダウンロードができます

ソースコード

diff #

from collections import defaultdict

def op(x, y):
    return x+y
class SegTree:
    def __init__(self, init_val, op, ide_ele):
        n = len(init_val)
        self.n = n
        self.op = op
        self.ide_ele = ide_ele
        self.num = 1 << (n - 1).bit_length()
        self.tree = [ide_ele] * 2 * self.num
        for i in range(n):
            self.tree[self.num + i] = init_val[i]
        for i in range(self.num - 1, 0, -1):
            self.tree[i] = self.op(self.tree[2 * i], self.tree[2 * i + 1])

    def update(self, k, x):
        k += self.num
        self.tree[k] = x
        while k > 1:
            self.tree[k >> 1] = self.op(self.tree[k], self.tree[k ^ 1])
            k >>= 1

    def query(self, l, r):
        res = self.ide_ele

        l += self.num
        r += self.num
        while l < r:
            if l & 1:
                res = self.op(res, self.tree[l])
                l += 1
            if r & 1:
                res = self.op(res, self.tree[r - 1])
            l >>= 1
            r >>= 1
        return res

    def __getitem__(self, n):
        return self.tree[self.num+n]
    
    def List(self):
        return self.tree[self.num:self.num+self.n]
    
    def max_right(self, l, f, limit):
        if l == self.n:
            return self.n
        l += self.num
        sm = self.ide_ele
        while True:
            while l%2 == 0:
                l >>= 1
            if not f(self.op(sm, self.tree[l]), limit):
                while l < self.num:
                    l <<= 1
                    if f(self.op(sm, self.tree[l]), limit):
                        sm = self.op(sm, self.tree[l])
                        l += 1
                return l-self.num
            sm = self.op(sm, self.tree[l])
            l += 1
            if l & -l == l:
                break
        return self.n
    
    def min_left(self, r, f, limit):
        if r == 0:
            return 0
        r += self.num
        sm = self.ide_ele
        while True:
            r -= 1
            while r > 1 and r%2 == 1:
                r >>= 1
            if not f(self.op(self.tree[r], sm), limit):
                while r < self.num:
                    r = 2*r+1
                    if f(self.op(self.tree[r], sm), limit):
                        sm = self.op(self.tree[r], sm)
                        r -= 1
                return r+1-self.num
            sm = self.op(self.tree[r], sm)
            if r & -r == r:
                break
        return 0

def bisect_R(n, limit):
    return n < limit

N = int(input())
A = list(map(int, input().split()))
Q = int(input())
query = [list(map(int, input().split())) for _ in range(Q)]

pre = defaultdict(int)
nex = defaultdict(int)
for i in range(N):
    if 1 <= i:
        pre[A[i]] = A[i-1]
    else:
        pre[A[i]] = -1
    if i+1 < N:
        nex[A[i]] = A[i+1]
    else:
        nex[A[i]] = -1

O = [-1]*Q
start = A[0]
end = A[-1]
B = N+1
for i in range(Q):
    if query[i][0] == 1:
        a = query[i][1]
        if a == 0:
            nex[end] = B
            pre[B] = end
            nex[B] = -1
            end = B
            if start == -1:
                start = B
        else:
            if a == start:
                start = B
            pre[B] = pre[a]
            nex[B] = a
            if pre[B] != -1:
                nex[pre[B]] = B
            pre[a] = B
        O[i] = B
        B += 1
    elif query[i][0] == 2:
        O[i] = start
        start = nex[start]

C = []
for n, v in pre.items():
    if v == -1:
        C.append(n)
        break
while nex[C[-1]] != -1:
    C.append(nex[C[-1]])
IDX = defaultdict(int)
for i in range(len(C)):
    IDX[C[i]] = i

S = [0]*len(C)
for a in A:
    S[IDX[a]] += 1
seg = SegTree(S, op, 0)
for i in range(Q):
    if O[i] != -1:
        seg.update(IDX[O[i]], seg[IDX[O[i]]]^1)
    else:
        k = query[i][1]
        print(C[seg.max_right(0, bisect_R, k)])
0