結果

問題 No.833 かっこいい電車
ユーザー norioc
提出日時 2025-06-05 11:39:45
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 390 ms / 2,000 ms
コード長 6,408 bytes
コンパイル時間 1,001 ms
コンパイル使用メモリ 82,184 KB
実行使用メモリ 92,284 KB
最終ジャッジ日時 2025-06-05 11:39:56
合計ジャッジ時間 9,746 ms
ジャッジサーバーID
(参考情報)
judge2 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 30
権限があれば一括ダウンロードができます

ソースコード

diff #

import typing
import sys
input = sys.stdin.readline


def _ceil_pow2(n: int) -> int:
    x = 0
    while (1 << x) < n:
        x += 1

    return x


class SegTree:
    def __init__(self,
                 op: typing.Callable[[typing.Any, typing.Any], typing.Any],
                 e: typing.Any,
                 v: typing.Union[int, typing.List[typing.Any]]) -> None:
        self._op = op
        self._e = e

        if isinstance(v, int):
            v = [e] * v

        self._n = len(v)
        self._log = _ceil_pow2(self._n)
        self._size = 1 << self._log
        self._d = [e] * (2 * self._size)

        for i in range(self._n):
            self._d[self._size + i] = v[i]
        for i in range(self._size - 1, 0, -1):
            self._update(i)

    def set(self, p: int, x: typing.Any) -> None:
        assert 0 <= p < self._n

        p += self._size
        self._d[p] = x
        for i in range(1, self._log + 1):
            self._update(p >> i)

    def get(self, p: int) -> typing.Any:
        assert 0 <= p < self._n

        return self._d[p + self._size]

    def prod(self, left: int, right: int) -> typing.Any:
        assert 0 <= left <= right <= self._n
        sml = self._e
        smr = self._e
        left += self._size
        right += self._size

        while left < right:
            if left & 1:
                sml = self._op(sml, self._d[left])
                left += 1
            if right & 1:
                right -= 1
                smr = self._op(self._d[right], smr)
            left >>= 1
            right >>= 1

        return self._op(sml, smr)

    def all_prod(self) -> typing.Any:
        return self._d[1]

    def max_right(self, left: int,
                  f: typing.Callable[[typing.Any], bool]) -> int:
        assert 0 <= left <= self._n
        assert f(self._e)

        if left == self._n:
            return self._n

        left += self._size
        sm = self._e

        first = True
        while first or (left & -left) != left:
            first = False
            while left % 2 == 0:
                left >>= 1
            if not f(self._op(sm, self._d[left])):
                while left < self._size:
                    left *= 2
                    if f(self._op(sm, self._d[left])):
                        sm = self._op(sm, self._d[left])
                        left += 1
                return left - self._size
            sm = self._op(sm, self._d[left])
            left += 1

        return self._n

    def min_left(self, right: int,
                 f: typing.Callable[[typing.Any], bool]) -> int:
        assert 0 <= right <= self._n
        assert f(self._e)

        if right == 0:
            return 0

        right += self._size
        sm = self._e

        first = True
        while first or (right & -right) != right:
            first = False
            right -= 1
            while right > 1 and right % 2:
                right >>= 1
            if not f(self._op(self._d[right], sm)):
                while right < self._size:
                    right = 2 * right + 1
                    if f(self._op(self._d[right], sm)):
                        sm = self._op(self._d[right], sm)
                        right -= 1
                return right + 1 - self._size
            sm = self._op(self._d[right], sm)

        return 0

    def _update(self, k: int) -> None:
        self._d[k] = self._op(self._d[2 * k], self._d[2 * k + 1])


class FenwickTree:
    def __init__(self, n: int):
        self.data = [0] * (n+10)
        self.n = (n+10)

    def add(self, p: int, x: int):
        assert 0 <= p < self.n
        p += 1
        while p < len(self.data):
            self.data[p] += x
            p += p & -p

    def sum(self, p: int) -> int:
        """区間 [0, p] の和"""
        assert 0 <= p < self.n
        p += 1
        s = 0
        while p > 0:
            s += self.data[p]
            p -= p & -p
        return s

    def rangesum(self, l: int, r: int) -> int:
        """区間 [l, r] の和"""
        assert 0 <= l <= r < self.n
        s = self.sum(r)
        if l > 0:
            s -= self.sum(l-1)
        return s


class ConnectableSeq:
    def __init__(self, size):
        self.ft = FenwickTree(size)
        for i in range(size):
            self.ft.add(i, 1)
        self.size = size

    def _get_low(self, p: int) -> int:
        tot = self.ft.sum(p)
        lo = 0
        hi = self.size-1
        res = hi
        while lo <= hi:
            m = (lo + hi) // 2
            if self.ft.sum(m) >= tot:
                res = min(res, m)
                hi = m - 1
            else:
                lo = m + 1

        return res

    def _get_high(self, p: int) -> int:
        tot = self.ft.sum(p)
        lo = 0
        hi = self.size-1
        res = 0
        while lo <= hi:
            m = (lo + hi) // 2
            if self.ft.sum(m) <= tot:
                res = max(res, m)
                lo = m + 1
            else:
                hi = m - 1

        return res

    def get_range(self, p: int) -> tuple[int, int]:
        """p 番目の要素と連結されている区間 [l, r] を返す"""
        assert 0 <= p < self.size

        l = self._get_low(p)
        r = self._get_high(p)
        return l, r

    def is_connect(self, p: int) -> bool:
        """p と p+1 が連結されているか"""
        assert 0 <= p and p+1 < self.size

        return self.ft.rangesum(p+1, p+1) == 0

    def connect(self, p: int):
        """p と p+1 を連結する"""
        assert 0 <= p and p+1 < self.size

        if self.is_connect(p): return
        self.ft.add(p+1, -1)

    def disconnect(self, p: int):
        """p と p+1 を切り離す"""
        assert 0 <= p and p+1 < self.size

        if not self.is_connect(p): return
        self.ft.add(p+1, 1)


N, Q = map(int, input().split())
A = list(map(int, input().split()))

cseq = ConnectableSeq(N)
segt = SegTree(lambda a, b: a+b, 0, A)

for _ in range(Q):
    q, x = map(int, input().split())
    match q:
        case 1:  # 連結
            x -= 1
            cseq.connect(x)
        case 2:  # 切り離す
            x -= 1
            cseq.disconnect(x)
        case 3:  # inc
            x -= 1
            segt.set(x, segt.get(x) + 1)
        case 4:  # 区間和
            x -= 1
            l, r = cseq.get_range(x)
            res = segt.prod(l, r+1)
            print(res)
0