結果

問題 No.3172 三角関数べき乗のフーリエ級数展開
ユーザー kk2a
提出日時 2025-06-06 21:44:51
言語 C++23
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 113 ms / 2,000 ms
コード長 51,259 bytes
コンパイル時間 2,105 ms
コンパイル使用メモリ 152,292 KB
実行使用メモリ 9,496 KB
最終ジャッジ日時 2025-06-06 21:44:56
合計ジャッジ時間 3,769 ms
ジャッジサーバーID
(参考情報)
judge2 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 4
other AC * 15
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <deque>
#include <stack>
#include <functional>
#include <istream>
#include <queue>
#include <unordered_map>
#include <list>
#include <utility>
#include <iomanip>
#include <numeric>
#include <iterator>
#include <string>
#include <fstream>
#include <ostream>
#include <iostream>
#include <type_traits>
#include <set>
#include <array>
#include <unordered_set>
#include <vector>
#include <map>
#include <optional>
#include <algorithm>
#include <bitset>
#include <cassert>

#ifndef KK2_TEMPLATE_PROCON_HPP
#define KK2_TEMPLATE_PROCON_HPP 1


#ifndef KK2_TEMPLATE_CONSTANT_HPP
#define KK2_TEMPLATE_CONSTANT_HPP 1

#ifndef KK2_TEMPLATE_TYPE_ALIAS_HPP
#define KK2_TEMPLATE_TYPE_ALIAS_HPP 1


using u32 = unsigned int;
using i64 = long long;
using u64 = unsigned long long;
using i128 = __int128_t;
using u128 = __uint128_t;

using pi = std::pair<int, int>;
using pl = std::pair<i64, i64>;
using pil = std::pair<int, i64>;
using pli = std::pair<i64, int>;

template <class T> using vc = std::vector<T>;
template <class T> using vvc = std::vector<vc<T>>;
template <class T> using vvvc = std::vector<vvc<T>>;
template <class T> using vvvvc = std::vector<vvvc<T>>;

template <class T> using pq = std::priority_queue<T>;
template <class T> using pqi = std::priority_queue<T, std::vector<T>, std::greater<T>>;

#endif // KK2_TEMPLATE_TYPE_ALIAS_HPP

template <class T> constexpr T infty = 0;
template <> constexpr int infty<int> = (1 << 30) - 123;
template <> constexpr i64 infty<i64> = (1ll << 62) - (1ll << 31);
template <> constexpr i128 infty<i128> = (i128(1) << 126) - (i128(1) << 63);
template <> constexpr u32 infty<u32> = infty<int>;
template <> constexpr u64 infty<u64> = infty<i64>;
template <> constexpr u128 infty<u128> = infty<i128>;
template <> constexpr double infty<double> = infty<i64>;
template <> constexpr long double infty<long double> = infty<i64>;

constexpr int mod = 998244353;
constexpr int modu = 1e9 + 7;
constexpr long double PI = 3.14159265358979323846;

#endif // KK2_TEMPLATE_CONSTANT_HPP
#ifndef KK2_TEMPLATE_FUNCTION_UTIL_HPP
#define KK2_TEMPLATE_FUNCTION_UTIL_HPP 1


#ifndef KK2_MATH_MONOID_MAX_HPP
#define KK2_MATH_MONOID_MAX_HPP 1


#ifndef KK2_TYPE_TRAITS_IO_HPP
#define KK2_TYPE_TRAITS_IO_HPP 1



namespace kk2 {

namespace type_traits {

struct istream_tag {};
struct ostream_tag {};

} // namespace type_traits

template <typename T> using is_standard_istream =
    typename std::conditional<std::is_same<T, std::istream>::value
                                  || std::is_same<T, std::ifstream>::value,
                              std::true_type,
                              std::false_type>::type;
template <typename T> using is_standard_ostream =
    typename std::conditional<std::is_same<T, std::ostream>::value
                                  || std::is_same<T, std::ofstream>::value,
                              std::true_type,
                              std::false_type>::type;
template <typename T> using is_user_defined_istream = std::is_base_of<type_traits::istream_tag, T>;
template <typename T> using is_user_defined_ostream = std::is_base_of<type_traits::ostream_tag, T>;

template <typename T> using is_istream =
    typename std::conditional<is_standard_istream<T>::value || is_user_defined_istream<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <typename T> using is_ostream =
    typename std::conditional<is_standard_ostream<T>::value || is_user_defined_ostream<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <typename T> using is_istream_t = std::enable_if_t<is_istream<T>::value>;
template <typename T> using is_ostream_t = std::enable_if_t<is_ostream<T>::value>;

} // namespace kk2

#endif // KK2_TYPE_TRAITS_IO_HPP

namespace kk2 {

namespace monoid {

template <class S, class Compare = std::less<S>> struct Max {
    static constexpr bool commutative = true;
    using M = Max;
    S a;
    bool is_unit;

    Max() : a(S()), is_unit(true) {}
    Max(S a_) : a(a_), is_unit(false) {}
    operator S() const { return a; }

    inline static M op(M l, M r) {
        if (l.is_unit or r.is_unit) return l.is_unit ? r : l;
        return Compare{}(l.a, r.a) ? r : l;
    }

    inline static M unit() { return M(); }

    bool operator==(const M &rhs) const {
        return is_unit == rhs.is_unit and (is_unit or a == rhs.a);
    }

    bool operator!=(const M &rhs) const {
        return is_unit != rhs.is_unit or (!is_unit and a != rhs.a);
    }

    template <class OStream, is_ostream_t<OStream> * = nullptr>
    friend OStream &operator<<(OStream &os, const M &x) {
        if (x.is_unit) os << "-inf";
        else os << x.a;
        return os;
    }

    template <class IStream, is_istream_t<IStream> * = nullptr>
    friend IStream &operator>>(IStream &is, M &x) {
        is >> x.a;
        x.is_unit = false;
        return is;
    }
};

} // namespace monoid

} // namespace kk2

#endif // MATH_MONOID_MAX_HPP
#ifndef KK2_MATH_MONOID_MIN_HPP
#define KK2_MATH_MONOID_MIN_HPP 1



namespace kk2 {

namespace monoid {

template <class S, class Compare = std::less<S>> struct Min {
    static constexpr bool commutative = true;
    using M = Min;
    S a;
    bool is_unit;

    Min() : a(S()), is_unit(true) {}
    Min(S a_) : a(a_), is_unit(false) {}
    operator S() const { return a; }

    inline static M op(M l, M r) {
        if (l.is_unit or r.is_unit) return l.is_unit ? r : l;
        return Compare{}(l.a, r.a) ? l : r;
    }

    inline static M unit() { return M(); }

    bool operator==(const M &rhs) const {
        return is_unit == rhs.is_unit and (is_unit or a == rhs.a);
    }

    bool operator!=(const M &rhs) const {
        return is_unit != rhs.is_unit or (!is_unit and a != rhs.a);
    }

    template <class OStream, is_ostream_t<OStream> * = nullptr>
    friend OStream &operator<<(OStream &os, const M &x) {
        if (x.is_unit) os << "inf";
        else os << x.a;
        return os;
    }

    template <class IStream, is_istream_t<IStream> * = nullptr>
    friend IStream &operator>>(IStream &is, M &x) {
        is >> x.a;
        x.is_unit = false;
        return is;
    }
};

} // namespace monoid

} // namespace kk2

#endif // KK2_MATH_MONOID_MIN_HPP
#ifndef KK2_TYPE_TRAITS_CONTAINER_TRAITS_HPP
#define KK2_TYPE_TRAITS_CONTAINER_TRAITS_HPP 1



namespace kk2 {

template <typename T> struct is_vector : std::false_type {};
template <typename T, typename Alloc> struct is_vector<std::vector<T, Alloc>> : std::true_type {};

// コンテナかどうかを判定するtraits
template <typename T> struct is_container : std::false_type {};

// 基本的なコンテナ型の特殊化
template <typename T, typename Alloc> struct is_container<std::vector<T, Alloc>> : std::true_type {
};

template <typename CharT, typename Traits, typename Alloc>
struct is_container<std::basic_string<CharT, Traits, Alloc>> : std::true_type {};

template <typename T, std::size_t N> struct is_container<std::array<T, N>> : std::true_type {};

template <typename T, typename Alloc> struct is_container<std::deque<T, Alloc>> : std::true_type {};

template <typename T, typename Alloc> struct is_container<std::list<T, Alloc>> : std::true_type {};

// SFINAEでコンテナを判定するためのヘルパー
template <typename T> using is_container_t =
    typename std::enable_if_t<is_container<T>::value, std::nullptr_t>;

} // namespace kk2

#endif // KK2_TYPE_TRAITS_CONTAINER_TRAITS_HPP

namespace kk2 {

template <class T, class... Sizes> auto make_vector(int first, Sizes... sizes) {
    if constexpr (sizeof...(sizes) == 0) {
        return std::vector<T>(first);
    } else {
        return std::vector<decltype(make_vector<T>(sizes...))>(first, make_vector<T>(sizes...));
    }
}

template <class T, class U> void fill_all(std::vector<T> &v, const U &x) {
    if constexpr (is_vector<T>::value) {
        for (auto &u : v) fill_all(u, x);
    } else {
        std::fill(v.begin(), v.end(), T(x));
    }
}

template <class T, class U> int iota_all(std::vector<T> &v, U x, int offset = 0) {
    if constexpr (is_vector<T>::value) {
        for (auto &u : v) offset += iota_all(u, x + offset);
    } else {
        for (auto &u : v) u = x++, ++offset;
    }
    return offset;
}

template <class C> int mysize(const C &c) { return size(c); }


// T: commutative monoid, F: (U, T) -> U
template <class U, class T, class F>
U all_monoid_prod(const std::vector<T> &v, U unit, const F &f) {
    U res = unit;
    if constexpr (is_vector<T>::value) {
        for (const auto &x : v) res = f(res, all_monoid_prod(x, unit, f));
    } else {
        for (const auto &x : v) res = f(res, x);
    }
    return res;
}

template <class U, class T> U all_sum(const std::vector<T> &v, U unit = U()) {
    return all_monoid_prod<U, T>(v, unit, [](U a, U b) { return a + b; });
}
template <class U, class T> U all_prod(const std::vector<T> &v, U unit = U(1)) {
    return all_monoid_prod<U, T>(v, unit, [](U a, U b) { return a * b; });
}
template <class U, class T> U all_xor(const std::vector<T> &v, U unit = U()) {
    return all_monoid_prod<U, T>(v, unit, [](U a, U b) { return a ^ b; });
}
template <class U, class T> U all_and(const std::vector<T> &v, U unit = U(-1)) {
    return all_monoid_prod<U, T>(v, unit, [](U a, U b) { return a & b; });
}
template <class U, class T> U all_or(const std::vector<T> &v, U unit = U()) {
    return all_monoid_prod<U, T>(v, unit, [](U a, U b) { return a | b; });
}
template <class U, class T> U all_min(const std::vector<T> &v) {
    return all_monoid_prod<monoid::Min<U>, T>(v, monoid::Min<U>::unit(), monoid::Min<U>::op);
}
template <class U, class T> U all_max(const std::vector<T> &v) {
    return all_monoid_prod<monoid::Max<U>, T>(v, monoid::Max<U>::unit(), monoid::Max<U>::op);
}
template <class U, class T> U all_gcd(const std::vector<T> &v, U unit = U()) {
    return all_monoid_prod<U, T>(v, unit, [](U a, U b) { return std::gcd(a, b); });
}
template <class U, class T> U all_lcm(const std::vector<T> &v, U unit = U(1)) {
    return all_monoid_prod<U, T>(v, unit, [](U a, U b) { return std::lcm(a, b); });
}

} // namespace kk2

#endif // KK2_TEMPLATE_FUNCTION_UTIL_HPP
#ifndef KK2_TEMPLATE_IO_UTIL_HPP
#define KK2_TEMPLATE_IO_UTIL_HPP 1



// なんかoj verifyはプロトタイプ宣言が落ちる

namespace impl {

struct read {
    template <class IStream, class T> inline static void all_read(IStream &is, T &x) { is >> x; }

    template <class IStream, class T, class U>
    inline static void all_read(IStream &is, std::pair<T, U> &p) {
        all_read(is, p.first);
        all_read(is, p.second);
    }

    template <class IStream, class T> inline static void all_read(IStream &is, std::vector<T> &v) {
        for (T &x : v) all_read(is, x);
    }

    template <class IStream, class T, size_t F>
    inline static void all_read(IStream &is, std::array<T, F> &a) {
        for (T &x : a) all_read(is, x);
    }
};

struct write {
    template <class OStream, class T> inline static void all_write(OStream &os, const T &x) {
        os << x;
    }

    template <class OStream, class T, class U>
    inline static void all_write(OStream &os, const std::pair<T, U> &p) {
        all_write(os, p.first);
        all_write(os, ' ');
        all_write(os, p.second);
    }

    template <class OStream, class T>
    inline static void all_write(OStream &os, const std::vector<T> &v) {
        for (int i = 0; i < (int)v.size(); ++i) {
            if (i) all_write(os, ' ');
            all_write(os, v[i]);
        }
    }

    template <class OStream, class T, size_t F>
    inline static void all_write(OStream &os, const std::array<T, F> &a) {
        for (int i = 0; i < (int)F; ++i) {
            if (i) all_write(os, ' ');
            all_write(os, a[i]);
        }
    }
};

} // namespace impl

template <class IStream, class T, class U, kk2::is_istream_t<IStream> * = nullptr>
IStream &operator>>(IStream &is, std::pair<T, U> &p) {
    impl::read::all_read(is, p);
    return is;
}

template <class IStream, class T, kk2::is_istream_t<IStream> * = nullptr>
IStream &operator>>(IStream &is, std::vector<T> &v) {
    impl::read::all_read(is, v);
    return is;
}

template <class IStream, class T, size_t F, kk2::is_istream_t<IStream> * = nullptr>
IStream &operator>>(IStream &is, std::array<T, F> &a) {
    impl::read::all_read(is, a);
    return is;
}

template <class OStream, class T, class U, kk2::is_ostream_t<OStream> * = nullptr>
OStream &operator<<(OStream &os, const std::pair<T, U> &p) {
    impl::write::all_write(os, p);
    return os;
}

template <class OStream, class T, kk2::is_ostream_t<OStream> * = nullptr>
OStream &operator<<(OStream &os, const std::vector<T> &v) {
    impl::write::all_write(os, v);
    return os;
}

template <class OStream, class T, size_t F, kk2::is_ostream_t<OStream> * = nullptr>
OStream &operator<<(OStream &os, const std::array<T, F> &a) {
    impl::write::all_write(os, a);
    return os;
}

#endif // KK2_TEMPLATE_IO_UTIL_HPP
#ifndef KK2_TEMPLATE_MACROS_HPP
#define KK2_TEMPLATE_MACROS_HPP 1

#define rep1(a) for (long long _ = 0; _ < (long long)(a); ++_)
#define rep2(i, a) for (long long i = 0; i < (long long)(a); ++i)
#define rep3(i, a, b) for (long long i = (a); i < (long long)(b); ++i)
#define repi2(i, a) for (long long i = (a) - 1; i >= 0; --i)
#define repi3(i, a, b) for (long long i = (a) - 1; i >= (long long)(b); --i)
#define overload3(a, b, c, d, ...) d
#define rep(...) overload3(__VA_ARGS__, rep3, rep2, rep1)(__VA_ARGS__)
#define repi(...) overload3(__VA_ARGS__, repi3, repi2, rep1)(__VA_ARGS__)

#define fi first
#define se second
#define all(p) begin(p), end(p)

#endif // KK2_TEMPLATE_MACROS_HPP

struct FastIOSetUp {
    FastIOSetUp() {
        std::ios::sync_with_stdio(false);
        std::cin.tie(nullptr);
    }
} fast_io_set_up;

auto &kin = std::cin;
auto &kout = std::cout;
auto (*kendl)(std::ostream &) = std::endl<char, std::char_traits<char>>;

void Yes(bool b = 1) { kout << (b ? "Yes\n" : "No\n"); }
void No(bool b = 1) { kout << (b ? "No\n" : "Yes\n"); }
void YES(bool b = 1) { kout << (b ? "YES\n" : "NO\n"); }
void NO(bool b = 1) { kout << (b ? "NO\n" : "YES\n"); }
void yes(bool b = 1) { kout << (b ? "yes\n" : "no\n"); }
void no(bool b = 1) { kout << (b ? "no\n" : "yes\n"); }
template <class T, class S> inline bool chmax(T &a, const S &b) { return (a < b ? a = b, 1 : 0); }
template <class T, class S> inline bool chmin(T &a, const S &b) { return (a > b ? a = b, 1 : 0); }

std::istream &operator>>(std::istream &is, u128 &x) {
    std::string s;
    is >> s;
    x = 0;
    for (char c : s) {
        assert('0' <= c && c <= '9');
        x = x * 10 + c - '0';
    }
    return is;
}

std::istream &operator>>(std::istream &is, i128 &x) {
    std::string s;
    is >> s;
    bool neg = s[0] == '-';
    x = 0;
    for (int i = neg; i < (int)s.size(); i++) {
        assert('0' <= s[i] && s[i] <= '9');
        x = x * 10 + s[i] - '0';
    }
    if (neg) x = -x;
    return is;
}

std::ostream &operator<<(std::ostream &os, u128 x) {
    if (x == 0) return os << '0';
    std::string s;
    while (x) {
        s.push_back('0' + x % 10);
        x /= 10;
    }
    std::reverse(s.begin(), s.end());
    return os << s;
}

std::ostream &operator<<(std::ostream &os, i128 x) {
    if (x == 0) return os << '0';
    if (x < 0) {
        os << '-';
        x = -x;
    }
    std::string s;
    while (x) {
        s.push_back('0' + x % 10);
        x /= 10;
    }
    std::reverse(s.begin(), s.end());
    return os << s;
}

#endif // KK2_TEMPLATE_PROCON_HPP
// #include <kk2/template/debug.hpp>
#ifndef KK2_MODINT_MODINT_HPP
#define KK2_MODINT_MODINT_HPP 1


#ifndef KK2_TYPE_TRAITS_INTERGRAL_HPP
#define KK2_TYPE_TRAITS_INTERGRAL_HPP 1



namespace kk2 {

#ifndef _MSC_VER

template <typename T> using is_signed_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value
                                  or std::is_same<T, __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <typename T> using is_unsigned_int128 =
    typename std::conditional<std::is_same<T, __uint128_t>::value
                                  or std::is_same<T, unsigned __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <typename T> using is_integral =
    typename std::conditional<std::is_integral<T>::value or is_signed_int128<T>::value
                                  or is_unsigned_int128<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <typename T> using is_signed =
    typename std::conditional<std::is_signed<T>::value or is_signed_int128<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <typename T> using is_unsigned =
    typename std::conditional<std::is_unsigned<T>::value or is_unsigned_int128<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <typename T> using make_unsigned_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t, unsigned __int128>;

template <typename T> using to_unsigned =
    typename std::conditional<is_signed_int128<T>::value,
                              make_unsigned_int128<T>,
                              typename std::conditional<std::is_signed<T>::value,
                                                        std::make_unsigned<T>,
                                                        std::common_type<T>>::type>::type;

#else

template <typename T> using is_integral = std::enable_if_t<std::is_integral<T>::value>;
template <typename T> using is_signed = std::enable_if_t<std::is_signed<T>::value>;
template <typename T> using is_unsigned = std::enable_if_t<std::is_unsigned<T>::value>;
template <typename T> using to_unsigned = std::make_unsigned<T>;

#endif // _MSC_VER

template <typename T> using is_integral_t = std::enable_if_t<is_integral<T>::value>;
template <typename T> using is_signed_t = std::enable_if_t<is_signed<T>::value>;
template <typename T> using is_unsigned_t = std::enable_if_t<is_unsigned<T>::value>;

} // namespace kk2

#endif // KK2_TYPE_TRAITS_INTERGRAL_HPP

namespace kk2 {

template <int p> struct ModInt {
    using mint = ModInt;

  public:
    static int Mod;

    constexpr static unsigned int getmod() {
        if (p > 0) return p;
        else return Mod;
    }

    static void setmod(int Mod_) {
        assert(1 <= Mod_);
        Mod = Mod_;
    }

    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    constexpr ModInt() : _v(0) {}

    template <class T, is_integral_t<T> * = nullptr> constexpr ModInt(T v) {
        if constexpr (is_signed<T>::value) {
            v = v % (long long)(getmod());
            if (v < 0) v += getmod();
            _v = v;
        } else if constexpr (is_unsigned<T>::value) {
            _v = v %= getmod();
        } else {
            ModInt();
        }
    }

    unsigned int val() const { return _v; }

    mint &operator++() {
        _v++;
        if (_v == getmod()) _v = 0;
        return *this;
    }

    mint &operator--() {
        if (_v == 0) _v = getmod();
        _v--;
        return *this;
    }

    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }

    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint &operator+=(const mint &rhs) {
        _v += rhs._v;
        if (_v >= getmod()) _v -= getmod();
        return *this;
    }

    mint &operator-=(const mint &rhs) {
        _v += getmod() - rhs._v;
        if (_v >= getmod()) _v -= getmod();
        return *this;
    }

    mint &operator*=(const mint &rhs) {
        unsigned long long z = _v;
        z *= rhs._v;
        z %= getmod();
        _v = z;
        return *this;
    }

    mint &operator/=(const mint &rhs) { return *this = *this * rhs.inv(); }
    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }
    friend mint operator+(const mint &lhs, const mint &rhs) { return mint(lhs) += rhs; }
    friend mint operator-(const mint &lhs, const mint &rhs) { return mint(lhs) -= rhs; }
    friend mint operator*(const mint &lhs, const mint &rhs) { return mint(lhs) *= rhs; }
    friend mint operator/(const mint &lhs, const mint &rhs) { return mint(lhs) /= rhs; }
    friend bool operator==(const mint &lhs, const mint &rhs) { return lhs._v == rhs._v; }
    friend bool operator!=(const mint &lhs, const mint &rhs) { return lhs._v != rhs._v; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }

    mint inv() const {
        long long s = getmod(), t = _v;
        long long m0 = 0, m1 = 1;

        while (t) {
            long long u = s / t;
            s -= t * u;
            m0 -= m1 * u;

            std::swap(s, t);
            std::swap(m0, m1);
        }
        if (m0 < 0) m0 += getmod() / s;
        return m0;
    }

    template <class OStream, is_ostream_t<OStream> * = nullptr>
    friend OStream &operator<<(OStream &os, const mint &mint_) {
        os << mint_._v;
        return os;
    }

    template <class IStream, is_istream_t<IStream> * = nullptr>
    friend IStream &operator>>(IStream &is, mint &mint_) {
        long long x;
        is >> x;
        mint_ = mint(x);
        return is;
    }

  private:
    unsigned int _v;
};

template <int p> int ModInt<p>::Mod = 998244353;

using mint998 = ModInt<998244353>;
using mint107 = ModInt<1000000007>;

} // namespace kk2

#endif // KK2_MODINT_MODINT_HPP
#ifndef KK2_FPS_FPS_NTT_FRIENDLY_HPP
#define KK2_FPS_FPS_NTT_FRIENDLY_HPP 1


#ifndef KK2_CONVOLUTION_CONVOLUTION_HPP
#define KK2_CONVOLUTION_CONVOLUTION_HPP 1


#ifndef KK2_FPS_FPS_SPARSITY_DETECTOR_HPP
#define KK2_FPS_FPS_SPARSITY_DETECTOR_HPP 1

#ifndef KK2_BIT_BITCOUNT_HPP
#define KK2_BIT_BITCOUNT_HPP 1



namespace kk2 {

template <typename T> constexpr int ctz(T x) {
    static_assert(is_integral<T>::value);
    assert(x != T(0));

    if constexpr (sizeof(T) <= 4) {
        return __builtin_ctz(x);
    } else if constexpr (sizeof(T) <= 8) {
        return __builtin_ctzll(x);
    } else {
        if (x & 0xffffffffffffffff)
            return __builtin_ctzll((unsigned long long)(x & 0xffffffffffffffff));
        return 64 + __builtin_ctzll((unsigned long long)(x >> 64));
    }
}

template <typename T> constexpr int lsb(T x) {
    static_assert(is_integral<T>::value);
    assert(x != T(0));

    return ctz(x);
}

template <typename T> constexpr int clz(T x) {
    static_assert(is_integral<T>::value);
    assert(x != T(0));

    if constexpr (sizeof(T) <= 4) {
        return __builtin_clz(x);
    } else if constexpr (sizeof(T) <= 8) {
        return __builtin_clzll(x);
    } else {
        if (x >> 64) return __builtin_clzll((unsigned long long)(x >> 64));
        return 64 + __builtin_clzll((unsigned long long)(x & 0xffffffffffffffff));
    }
}

template <typename T> constexpr int msb(T x) {
    static_assert(is_integral<T>::value);
    assert(x != T(0));

    return sizeof(T) * 8 - 1 - clz(x);
}

template <typename T> constexpr int popcount(T x) {
    static_assert(is_integral<T>::value);

    if constexpr (sizeof(T) <= 4) {
        return __builtin_popcount(x);
    } else if constexpr (sizeof(T) <= 8) {
        return __builtin_popcountll(x);
    } else {
        return __builtin_popcountll((unsigned long long)(x >> 64))
               + __builtin_popcountll((unsigned long long)(x & 0xffffffffffffffff));
    }
}

}; // namespace kk2

#endif // KK2_BIT_BITCOUNT_HPP

namespace kk2 {

enum class FPSOperation { CONVOLUTION };

template <class FPS, class mint = typename FPS::value_type>
bool is_sparse_operation(FPSOperation op, bool is_ntt_friendly, const FPS &a, const FPS &b) {
    int n = a.size(), m = b.size();
    long long not_zero_a = 0, not_zero_b = 0;
    for (int i = 0; i < n; i++) not_zero_a += a[i] != mint(0);
    for (int i = 0; i < m; i++) not_zero_b += b[i] != mint(0);

    if (op == FPSOperation::CONVOLUTION) {
        // NTT-friendly -> 3 * FFT
        // Arbitrary    -> 9 * FFT
        // Sparse       -> not_zero(a) * not_zero(b)
        int lg = msb(n + m) / 2 + 1;
        return (n + m) * lg * (is_ntt_friendly ? 3 : 7) > not_zero_a * not_zero_b;
    }
    return false;
}

} // namespace kk2

#endif // KK2_FPS_FPS_SPARSITY_DETECTOR_HPP
#ifndef KK2_MATH_MOD_BUTTERFLY_HPP
#define KK2_MATH_MOD_BUTTERFLY_HPP 1


#ifndef KK2_MATH_MOD_PRIMITIVE_ROOT_HPP
#define KK2_MATH_MOD_PRIMITIVE_ROOT_HPP 1

#ifndef KK2_MATH_MOD_POW_MOD_HPP
#define KK2_MATH_MOD_POW_MOD_HPP 1


namespace kk2 {

template <class S, class T, class U> constexpr S pow_mod(T x, U n, T m) {
    assert(n >= 0);
    if (m == 1) return S(0);
    S _m = m, r = 1;
    S y = x % _m;
    if (y < 0) y += _m;
    while (n) {
        if (n & 1) r = (r * y) % _m;
        if (n >>= 1) y = (y * y) % _m;
    }
    return r;
}

} // namespace kk2

#endif // KK2_MATH_MOD_POW_MOD_HPP

namespace kk2 {

constexpr int primitive_root_constexpr(int m) {
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    if (m == 1107296257) return 10;
    int divs[20] = {};
    divs[0] = 2;
    int cnt = 1;
    int x = (m - 1) / 2;
    while (x % 2 == 0) x /= 2;
    for (int i = 3; (long long)(i)*i <= x; i += 2) {
        if (x % i == 0) {
            divs[cnt++] = i;
            while (x % i == 0) { x /= i; }
        }
    }
    if (x > 1) { divs[cnt++] = x; }
    for (int g = 2;; g++) {
        bool ok = true;
        for (int i = 0; i < cnt; i++) {
            if (pow_mod<long long>(g, (m - 1) / divs[i], m) == 1) {
                ok = false;
                break;
            }
        }
        if (ok) return g;
    }
}

template <int m> static constexpr int primitive_root = primitive_root_constexpr(m);

} // namespace kk2

#endif // KK2_MATH_MOD_PRIMITIVE_ROOT_HPP

namespace kk2 {

template <class FPS, class mint = typename FPS::value_type> void butterfly(FPS &a) {
    static int g = primitive_root<mint::getmod()>;
    int n = int(a.size());
    int h = 0;
    while ((1U << h) < (unsigned int)(n)) h++;
    static bool first = true;
    static mint sum_e2[30]; // sum_e[i] = ies[0] * ... * ies[i - 1] * es[i]
    static mint sum_e3[30];
    static mint es[30], ies[30]; // es[i]^(2^(2+i)) == 1
    if (first) {
        first = false;
        int cnt2 = __builtin_ctz(mint::getmod() - 1);
        mint e = mint(g).pow((mint::getmod() - 1) >> cnt2), ie = e.inv();
        for (int i = cnt2; i >= 2; i--) {
            // e^(2^i) == 1
            es[i - 2] = e;
            ies[i - 2] = ie;
            e *= e;
            ie *= ie;
        }
        mint now = 1;
        for (int i = 0; i <= cnt2 - 2; i++) {
            sum_e2[i] = es[i] * now;
            now *= ies[i];
        }
        now = 1;
        for (int i = 0; i <= cnt2 - 3; i++) {
            sum_e3[i] = es[i + 1] * now;
            now *= ies[i + 1];
        }
    }

    int len = 0;
    while (len < h) {
        if (h - len == 1) {
            int p = 1 << (h - len - 1);
            mint rot = 1;
            for (int s = 0; s < (1 << len); s++) {
                int offset = s << (h - len);
                for (int i = 0; i < p; i++) {
                    auto l = a[i + offset];
                    auto r = a[i + offset + p] * rot;
                    a[i + offset] = l + r;
                    a[i + offset + p] = l - r;
                }
                if (s + 1 != (1 << len)) rot *= sum_e2[__builtin_ctz(~(unsigned int)(s))];
            }
            len++;
        } else {
            int p = 1 << (h - len - 2);
            mint rot = 1, imag = es[0];
            for (int s = 0; s < (1 << len); s++) {
                mint rot2 = rot * rot;
                mint rot3 = rot2 * rot;
                int offset = s << (h - len);
                for (int i = 0; i < p; i++) {
                    auto a0 = a[i + offset];
                    auto a1 = a[i + offset + p] * rot;
                    auto a2 = a[i + offset + p * 2] * rot2;
                    auto a3 = a[i + offset + p * 3] * rot3;
                    auto a1na3imag = (a1 - a3) * imag;
                    a[i + offset] = a0 + a2 + a1 + a3;
                    a[i + offset + p] = a0 + a2 - a1 - a3;
                    a[i + offset + p * 2] = a0 - a2 + a1na3imag;
                    a[i + offset + p * 3] = a0 - a2 - a1na3imag;
                }
                if (s + 1 != (1 << len)) rot *= sum_e3[__builtin_ctz(~(unsigned int)(s))];
            }
            len += 2;
        }
    }
}

template <class FPS, class mint = typename FPS::value_type> void butterfly_inv(FPS &a) {
    static constexpr int g = primitive_root<mint::getmod()>;
    int n = int(a.size());
    int h = 0;
    while ((1U << h) < (unsigned int)(n)) h++;
    static bool first = true;
    static mint sum_ie2[30]; // sum_ie[i] = es[0] * ... * es[i - 1] * ies[i]
    static mint sum_ie3[30];
    static mint es[30], ies[30]; // es[i]^(2^(2+i)) == 1
    static mint invn[30];
    if (first) {
        first = false;
        int cnt2 = __builtin_ctz(mint::getmod() - 1);
        mint e = mint(g).pow((mint::getmod() - 1) >> cnt2), ie = e.inv();
        for (int i = cnt2; i >= 2; i--) {
            // e^(2^i) == 1
            es[i - 2] = e;
            ies[i - 2] = ie;
            e *= e;
            ie *= ie;
        }
        mint now = 1;
        for (int i = 0; i <= cnt2 - 2; i++) {
            sum_ie2[i] = ies[i] * now;
            now *= es[i];
        }
        now = 1;
        for (int i = 0; i <= cnt2 - 3; i++) {
            sum_ie3[i] = ies[i + 1] * now;
            now *= es[i + 1];
        }

        invn[0] = 1;
        invn[1] = mint::getmod() / 2 + 1;
        for (int i = 2; i < 30; i++) invn[i] = invn[i - 1] * invn[1];
    }
    int len = h;
    while (len) {
        if (len == 1) {
            int p = 1 << (h - len);
            mint irot = 1;
            for (int s = 0; s < (1 << (len - 1)); s++) {
                int offset = s << (h - len + 1);
                for (int i = 0; i < p; i++) {
                    auto l = a[i + offset];
                    auto r = a[i + offset + p];
                    a[i + offset] = l + r;
                    a[i + offset + p] = (l - r) * irot;
                }
                if (s + 1 != (1 << (len - 1))) irot *= sum_ie2[__builtin_ctz(~(unsigned int)(s))];
            }
            len--;
        } else {
            int p = 1 << (h - len);
            mint irot = 1, iimag = ies[0];
            for (int s = 0; s < (1 << ((len - 2))); s++) {
                mint irot2 = irot * irot;
                mint irot3 = irot2 * irot;
                int offset = s << (h - len + 2);
                for (int i = 0; i < p; i++) {
                    auto a0 = a[i + offset];
                    auto a1 = a[i + offset + p];
                    auto a2 = a[i + offset + p * 2];
                    auto a3 = a[i + offset + p * 3];
                    auto a2na3iimag = (a2 - a3) * iimag;

                    a[i + offset] = a0 + a1 + a2 + a3;
                    a[i + offset + p] = (a0 - a1 + a2na3iimag) * irot;
                    a[i + offset + p * 2] = (a0 + a1 - a2 - a3) * irot2;
                    a[i + offset + p * 3] = (a0 - a1 - a2na3iimag) * irot3;
                }
                if (s + 1 != (1 << (len - 2))) irot *= sum_ie3[__builtin_ctz(~(unsigned int)(s))];
            }
            len -= 2;
        }
    }

    for (int i = 0; i < n; i++) a[i] *= invn[h];
}

template <class FPS, class mint = typename FPS::value_type> void doubling(FPS &a) {
    int n = a.size();
    auto b = a;
    int z = 1;
    butterfly_inv(b);
    mint r = 1, zeta = mint(primitive_root<mint::getmod()>).pow((mint::getmod() - 1) / (n << 1));
    for (int i = 0; i < n; i++) {
        b[i] *= r;
        r *= zeta;
    }
    butterfly(b);
    std::copy(b.begin(), b.end(), std::back_inserter(a));
}

} // namespace kk2

#endif // KK2_MATH_MOD_BUTTERFLY_HPP

namespace kk2 {

template <class FPS, class mint = typename FPS::value_type> FPS convolution(FPS &a, const FPS &b) {
    int n = int(a.size()), m = int(b.size());
    if (!n || !m) return {};
    if (is_sparse_operation(FPSOperation::CONVOLUTION, 1, a, b)) {
        std::vector<int> nza(n), nzb(m);
        int ai = 0, bi = 0;
        for (int i = 0; i < n; i++)
            if (a[i] != mint(0)) nza[ai++] = i;
        for (int i = 0; i < m; i++)
            if (b[i] != mint(0)) nzb[bi++] = i;
        nza.resize(ai), nzb.resize(bi);
        FPS res(n + m - 1);
        for (int i : nza)
            for (int j : nzb) res[i + j] += a[i] * b[j];
        return a = res;
    }

    int z = 1;
    while (z < n + m - 1) z <<= 1;
    if (a == b) {
        a.resize(z);
        butterfly(a);
        for (int i = 0; i < z; i++) a[i] *= a[i];
    } else {
        a.resize(z);
        butterfly(a);
        FPS t(b.begin(), b.end());
        t.resize(z);
        butterfly(t);
        for (int i = 0; i < z; i++) a[i] *= t[i];
    }
    butterfly_inv(a);
    a.resize(n + m - 1);
    return a;
}

} // namespace kk2

#endif // KK2_CONVOLUTION_CONVOLUTION_HPP

namespace kk2 {

template <class mint> struct FormalPowerSeriesNTTFriendly : std::vector<mint> {
    using std::vector<mint>::vector;
    using FPS = FormalPowerSeriesNTTFriendly;

    template <class OStream, is_ostream_t<OStream> * = nullptr>
    void debug_output(OStream &os) const {
        os << "[";
        for (int i = 0; i < (int)this->size(); i++) {
            os << (*this)[i] << (i + 1 == (int)this->size() ? "" : ", ");
        }
        os << "]";
    }

    template <class OStream, is_ostream_t<OStream> * = nullptr> void output(OStream &os) const {
        for (int i = 0; i < (int)this->size(); i++) {
            os << (*this)[i] << (i + 1 == (int)this->size() ? "\n" : " ");
        }
    }

    template <class OStream, is_ostream_t<OStream> * = nullptr>
    friend OStream &operator<<(OStream &os, const FPS &fps_) {
        for (int i = 0; i < (int)fps_.size(); i++) {
            os << fps_[i] << (i + 1 == (int)fps_.size() ? "" : " ");
        }
        return os;
    }

    template <class IStream, is_istream_t<IStream> * = nullptr> FPS &input(IStream &is) {
        for (int i = 0; i < (int)this->size(); i++) is >> (*this)[i];
        return *this;
    }

    template <class IStream, is_istream_t<IStream> * = nullptr>
    friend IStream &operator>>(IStream &is, FPS &fps_) {
        for (auto &x : fps_) is >> x;
        return is;
    }

    FPS &operator+=(const FPS &r) {
        if (this->size() < r.size()) this->resize(r.size());
        for (int i = 0; i < (int)r.size(); i++) (*this)[i] += r[i];
        return *this;
    }

    FPS &operator+=(const mint &r) {
        if (this->empty()) this->resize(1);
        (*this)[0] += r;
        return *this;
    }

    FPS &operator-=(const FPS &r) {
        if (this->size() < r.size()) this->resize(r.size());
        for (int i = 0; i < (int)r.size(); i++) (*this)[i] -= r[i];
        return *this;
    }

    FPS &operator-=(const mint &r) {
        if (this->empty()) this->resize(1);
        (*this)[0] -= r;
        return *this;
    }

    FPS &operator*=(const mint &r) {
        for (int i = 0; i < (int)this->size(); i++) { (*this)[i] *= r; }
        return *this;
    }

    FPS &operator/=(const FPS &r) {
        assert(!r.empty());
        if (this->size() < r.size()) {
            this->clear();
            return *this;
        }
        int n = this->size() - r.size() + 1;
        if ((int)r.size() <= 64) {
            FPS f(*this), g(r);
            g.shrink();
            mint coeff = g.back().inv();
            for (auto &x : g) x *= coeff;
            int deg = (int)f.size() - (int)g.size() + 1;
            int gs = g.size();
            FPS quo(deg);
            for (int i = deg - 1; i >= 0; i--) {
                quo[i] = f[i + gs - 1];
                for (int j = 0; j < gs; j++) f[i + j] -= quo[i] * g[j];
            }
            *this = quo * coeff;
            this->resize(n, mint(0));
            return *this;
        }
        return *this = ((*this).rev().pre(n) * r.rev().inv(n)).pre(n).rev();
    }

    FPS &operator%=(const FPS &r) {
        *this -= *this / r * r;
        shrink();
        return *this;
    }

    FPS operator+(const FPS &r) const { return FPS(*this) += r; }

    FPS operator+(const mint &r) const { return FPS(*this) += r; }

    FPS operator-(const FPS &r) const { return FPS(*this) -= r; }

    FPS operator-(const mint &r) const { return FPS(*this) -= r; }

    FPS operator*(const mint &r) const { return FPS(*this) *= r; }

    FPS operator/(const FPS &r) const { return FPS(*this) /= r; }

    FPS operator%(const FPS &r) const { return FPS(*this) %= r; }

    FPS operator-() const {
        FPS ret(this->size());
        for (int i = 0; i < (int)this->size(); i++) ret[i] = -(*this)[i];
        return ret;
    }

    FPS &shrink() {
        while (this->size() && this->back() == mint(0)) this->pop_back();
        return *this;
    }

    FPS rev() const {
        FPS ret(*this);
        std::reverse(ret.begin(), ret.end());
        return ret;
    }

    FPS &inplace_rev() {
        std::reverse(this->begin(), this->end());
        return *this;
    }

    FPS dot(const FPS &r) const {
        FPS ret(std::min(this->size(), r.size()));
        for (int i = 0; i < (int)ret.size(); i++) ret[i] = (*this)[i] * r[i];
        return ret;
    }

    FPS &inplace_dot(const FPS &r) {
        this->resize(std::min(this->size(), r.size()));
        for (int i = 0; i < (int)this->size(); i++) (*this)[i] *= r[i];
        return *this;
    }

    FPS pre(int n) const {
        FPS ret(this->begin(), this->begin() + std::min((int)this->size(), n));
        if ((int)ret.size() < n) ret.resize(n, mint(0));
        return ret;
    }

    FPS &inplace_pre(int n) {
        this->resize(n);
        return *this;
    }

    FPS operator>>(int n) const {
        if (n >= (int)this->size()) return {};
        FPS ret(this->begin() + n, this->end());
        return ret;
    }

    FPS operator<<(int n) const {
        FPS ret(*this);
        ret.insert(ret.begin(), n, mint(0));
        return ret;
    }

    FPS diff() const {
        const int n = (int)this->size();
        FPS ret(std::max(0, n - 1));
        for (int i = 1; i < n; i++) { ret[i - 1] = (*this)[i] * mint(i); }
        return ret;
    }

    FPS &inplace_diff() {
        if (this->empty()) return *this = FPS();
        this->erase(this->begin());
        for (int i = 1; i <= (int)this->size(); i++) (*this)[i - 1] *= mint(i);
        return *this;
    }

    FPS integral() const {
        const int n = (int)this->size();
        FPS ret(n + 1);
        ret[0] = mint(0);
        if (n > 0) ret[1] = mint(1);
        auto mod = mint::getmod();
        for (int i = 2; i <= n; i++) {
            // p = q * i + r
            // - q / r = 1 / i (mod p)
            ret[i] = (-ret[mod % i]) * (mod / i);
        }
        for (int i = 0; i < n; i++) { ret[i + 1] *= (*this)[i]; }
        return ret;
    }

    FPS &inplace_int() {
        static std::vector<mint> inv{0, 1};
        const int n = this->size();
        auto mod = mint::getmod();
        while ((int)inv.size() <= n) {
            // p = q * i + r
            // - q / r = 1 / i (mod p)
            int i = inv.size();
            inv.push_back((-inv[mod % i]) * (mod / i));
        }
        this->insert(this->begin(), mint(0));
        for (int i = 1; i <= n; i++) (*this)[i] *= inv[i];
        return *this;
    }

    mint eval(mint x) const {
        mint r = 0, w = 1;
        for (auto &v : *this) {
            r += w * v;
            w *= x;
        }
        return r;
    }

    FPS log(int deg = -1) const {
        assert(!this->empty() && (*this)[0] == mint(1));
        if (deg == -1) deg = this->size();
        return (this->diff() * this->inv(deg)).pre(deg - 1).integral();
    }

    FPS sparse_log(int deg = -1) const {
        assert(!this->empty() && (*this)[0] == mint(1));
        if (deg == -1) deg = this->size();
        std::vector<std::pair<int, mint>> fs;
        for (int i = 1; i < int(this->size()); i++) {
            if ((*this)[i] != mint(0)) fs.emplace_back(i, (*this)[i]);
        }

        int mod = mint::getmod();
        static std::vector<mint> inv{1, 1};
        while ((int)inv.size() <= deg) {
            int i = inv.size();
            inv.push_back(-inv[mod % i] * (mod / i));
        }

        FPS g(deg);
        for (int k = 0; k < deg - 1; k++) {
            for (auto &[j, fj] : fs) {
                if (k < j) break;
                int i = k - j;
                g[k + 1] -= g[i + 1] * fj * (i + 1);
            }
            g[k + 1] *= inv[k + 1];
            if (k + 1 < int(this->size())) g[k + 1] += (*this)[k + 1];
        }

        return g;
    }

    template <class T> FPS pow(T k, int deg = -1) const {
        const int n = this->size();
        if (deg == -1) deg = n;
        if (k == 0) {
            FPS ret(deg);
            if (deg > 0) ret[0] = mint(1);
            return ret;
        }
        for (int i = 0; i < n; i++) {
            if ((*this)[i] != mint(0)) {
                mint rev = mint(1) / (*this)[i];
                FPS ret = (((*this * rev) >> i).log(deg) * k).exp(deg);
                ret *= (*this)[i].pow(k);
                ret = (ret << (i * k)).pre(deg);
                if ((int)ret.size() < deg) ret.resize(deg, mint(0));
                return ret;
            }
            if (__int128_t(i + 1) * k >= deg) return FPS(deg, mint(0));
        }
        return FPS(deg, mint(0));
    }

    template <class T> FPS sparse_pow(T k, int deg = -1) const {
        if (deg == -1) deg = this->size();
        if (k == 0) {
            FPS ret(deg);
            if (deg > 0) ret[0] = mint(1);
            return ret;
        }

        int zero = 0;
        while (zero != int(this->size()) && (*this)[zero] == mint(0)) zero++;
        if (zero == int(this->size()) || __int128_t(zero) * k >= deg) { return FPS(deg, mint(0)); }
        if (zero != 0) {
            FPS suf(this->begin() + zero, this->end());
            auto g = suf.sparse_pow(k, deg - zero * k);
            FPS ret(zero * k, mint(0));
            std::copy(std::begin(g), std::end(g), std::back_inserter(ret));
            return ret;
        }

        int mod = mint::getmod();
        static std::vector<mint> inv{1, 1};
        while ((int)inv.size() <= deg) {
            int i = inv.size();
            inv.push_back(-inv[mod % i] * (mod / i));
        }

        std::vector<std::pair<int, mint>> fs;
        for (int i = 1; i < int(this->size()); i++) {
            if ((*this)[i] != mint(0)) fs.emplace_back(i, (*this)[i]);
        }

        FPS g(deg);
        g[0] = (*this)[0].pow(k);
        mint denom = (*this)[0].inv();
        k %= mod;
        for (int a = 1; a < deg; a++) {
            for (auto &[i, f_i] : fs) {
                if (a < i) break;
                g[a] += g[a - i] * f_i * (mint(i) * (k + 1) - a);
            }
            g[a] *= denom * inv[a];
        }
        return g;
    }

    // assume that r is sparse
    // return this / r
    FPS sparse_div(const FPS &r, int deg = -1) const {
        assert(!r.empty() && r[0] != mint(0));
        if (deg == -1) deg = this->size();
        mint ir0 = r[0].inv();
        FPS ret = *this * ir0;
        ret.resize(deg);
        std::vector<std::pair<int, mint>> gs;
        for (int i = 1; i < (int)r.size(); i++) {
            if (r[i] != mint(0)) gs.emplace_back(i, r[i] * ir0);
        }
        for (int i = 0; i < deg; i++) {
            for (auto &[j, g_j] : gs) {
                if (i + j >= deg) break;
                ret[i + j] -= ret[i] * g_j;
            }
        }
        return ret;
    }

    FPS sparse_inv(int deg = -1) const {
        assert(!this->empty() && (*this)[0] != mint(0));
        if (deg == -1) deg = this->size();
        std::vector<std::pair<int, mint>> fs;
        for (int i = 1; i < int(this->size()); i++) {
            if ((*this)[i] != mint(0)) fs.emplace_back(i, (*this)[i]);
        }
        FPS ret(deg);
        mint if0 = (*this)[0].inv();
        if (0 < deg) ret[0] = if0;
        for (int k = 1; k < deg; k++) {
            for (auto &[j, fj] : fs) {
                if (k < j) break;
                ret[k] += ret[k - j] * fj;
            }
            ret[k] *= -if0;
        }
        return ret;
    }

    FPS sparse_exp(int deg = -1) const {
        assert(this->empty() || (*this)[0] == mint(0));
        if (deg == -1) deg = this->size();
        std::vector<std::pair<int, mint>> fs;
        for (int i = 1; i < int(this->size()); i++) {
            if ((*this)[i] != mint(0)) fs.emplace_back(i, (*this)[i]);
        }

        int mod = mint::getmod();
        static std::vector<mint> inv{1, 1};
        while ((int)inv.size() <= deg) {
            int i = inv.size();
            inv.push_back(-inv[mod % i] * (mod / i));
        }

        FPS g(deg);
        if (deg) g[0] = 1;
        for (int k = 0; k < deg - 1; k++) {
            for (auto &[ip1, fip1] : fs) {
                int i = ip1 - 1;
                if (k < i) break;
                g[k + 1] += g[k - i] * fip1 * (i + 1);
            }
            g[k + 1] *= inv[k + 1];
        }

        return g;
    }

    FPS &inplace_imos(int n) {
        inplace_pre(n);
        for (int i = 0; i < n - 1; i++) { (*this)[i + 1] += (*this)[i]; }
        return *this;
    }

    FPS imos(int n) const {
        FPS ret(*this);
        return ret.inplace_imos(n);
    }

    FPS &inplace_iimos(int n) {
        inplace_pre(n);
        for (int i = 0; i < n - 1; i++) { (*this)[i + 1] -= (*this)[i]; }
        return *this;
    }

    FPS iimos(int n) const {
        FPS ret(*this);
        return ret.inplace_iimos(n);
    }

    FPS &operator*=(const FPS &r);

    FPS operator*(const FPS &r) const { return FPS(*this) *= r; }

    void but();
    void ibut();
    void db();
    static int but_pr();
    FPS inv(int deg = -1) const;
    FPS exp(int deg = -1) const;
};

template <class mint> FormalPowerSeriesNTTFriendly<mint> &
FormalPowerSeriesNTTFriendly<mint>::operator*=(const FormalPowerSeriesNTTFriendly<mint> &r) {
    if (this->empty() || r.empty()) {
        this->clear();
        return *this;
    }
    convolution(*this, r);
    return *this;
}

template <class mint> void FormalPowerSeriesNTTFriendly<mint>::but() { butterfly(*this); }

template <class mint> void FormalPowerSeriesNTTFriendly<mint>::ibut() { butterfly_inv(*this); }

template <class mint> void FormalPowerSeriesNTTFriendly<mint>::db() { doubling(*this); }

template <class mint> int FormalPowerSeriesNTTFriendly<mint>::but_pr() {
    return primitive_root<mint::getmod()>;
}

template <class mint>
FormalPowerSeriesNTTFriendly<mint> FormalPowerSeriesNTTFriendly<mint>::inv(int deg) const {
    assert((*this)[0] != mint(0));
    if (deg == -1) deg = (int)this->size();
    FormalPowerSeriesNTTFriendly<mint> res(deg);
    res[0] = {mint(1) / (*this)[0]};
    for (int d = 1; d < deg; d <<= 1) {
        FormalPowerSeriesNTTFriendly<mint> f(2 * d), g(2 * d);
        std::copy(std::begin(*this),
                  std::begin(*this) + std::min((int)this->size(), 2 * d),
                  std::begin(f));
        std::copy(std::begin(res), std::begin(res) + d, std::begin(g));
        f.but();
        g.but();
        f.inplace_dot(g);
        f.ibut();
        std::fill(std::begin(f), std::begin(f) + d, mint(0));
        f.but();
        f.inplace_dot(g);
        f.ibut();
        for (int j = d; j < std::min(2 * d, deg); j++) res[j] = -f[j];
    }
    return res.pre(deg);
}

template <class mint>
FormalPowerSeriesNTTFriendly<mint> FormalPowerSeriesNTTFriendly<mint>::exp(int deg) const {
    assert(this->empty() || (*this)[0] == mint(0));
    if (deg == -1) deg = (int)this->size();
    FormalPowerSeriesNTTFriendly<mint> inv;
    inv.reserve(deg + 1);
    inv.push_back(mint(0));
    inv.push_back(mint(1));

    FormalPowerSeriesNTTFriendly<mint> b{1, 1 < (int)this->size() ? (*this)[1] : mint(0)};
    FormalPowerSeriesNTTFriendly<mint> c{1}, z1, z2{1, 1};
    for (int m = 2; m < deg; m <<= 1) {
        auto y = b;
        y.resize(m << 1);
        y.but();
        z1 = z2;
        FormalPowerSeriesNTTFriendly<mint> z(m);
        z = y.dot(z1);
        z.ibut();
        std::fill(std::begin(z), std::begin(z) + (m >> 1), mint(0));
        z.but();
        z.inplace_dot(-z1);
        z.ibut();
        c.insert(std::end(c), std::begin(z) + (m >> 1), std::end(z));
        z2 = c;
        z2.resize(m << 1);
        z2.but();

        FormalPowerSeriesNTTFriendly<mint> x(this->begin(),
                                             this->begin() + std::min<int>(this->size(), m));
        x.resize(m);
        x.inplace_diff();
        x.push_back(mint(0));
        x.but();
        x.inplace_dot(y);
        x.ibut();
        x -= b.diff();
        x.resize(m << 1);
        for (int i = 0; i < m - 1; i++) {
            x[m + i] = x[i];
            x[i] = mint(0);
        }
        x.but();
        x.inplace_dot(z2);
        x.ibut();
        x.pop_back();
        x.inplace_int();
        for (int i = m; i < std::min<int>(this->size(), m << 1); i++) x[i] += (*this)[i];
        std::fill(std::begin(x), std::begin(x) + m, mint(0));
        x.but();
        x.inplace_dot(y);
        x.ibut();
        b.insert(std::end(b), std::begin(x) + m, std::end(x));
    }
    return FormalPowerSeriesNTTFriendly<mint>(std::begin(b), std::begin(b) + deg);
}

template <class mint> using FPSNTT = FormalPowerSeriesNTTFriendly<mint>;

} // namespace kk2

#endif // KK2_FPS_FPS_NTT_FRIENDLY_HPP
using namespace std;

void solve() {
    using mint = kk2::mint998;
    using fps = kk2::FPSNTT<mint>;

    int n;
    kin >> n;

    mint inv2 = mint(2).inv();

    auto mult = [&inv2](const fps &a, const fps &b) -> fps {
        fps c(a.size() + b.size() - 1);
        fps tmp = a * b;
        rep (i, tmp.size()) c[i] = tmp[i] * inv2;
        fps rb = b.rev();
        tmp = a * rb;
        int m = b.size() - 1;
        rep (i, tmp.size()) {
            int j = abs(i - m);
            c[j] += tmp[i] * inv2;
        }
        return c;
    };

    auto rec = [&](auto self, int m) -> fps {
        if (m == 0) return fps{1};
        if (m == 1) return fps{0, 2};
        fps a = self(self, m / 2);
        if (m & 1) return mult(mult(a, a), fps{0, 2});
        else return mult(a, a);
    };

    kout << rec(rec, n) << kendl;
}

int main() {
#ifdef KK2
    int t = 4;
#else
    int t = 1;
#endif
    // kin >> t;
    rep (t) solve();

    return 0;
}
// Author: kk2
// converted by https://github.com/kk2a/cpp-bundle
// 2025-06-06 21:44:45
0