結果
| 問題 |
No.3172 三角関数べき乗のフーリエ級数展開
|
| ユーザー |
Taiki0715
|
| 提出日時 | 2025-06-06 21:55:50 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 84 ms / 2,000 ms |
| コード長 | 13,698 bytes |
| コンパイル時間 | 3,597 ms |
| コンパイル使用メモリ | 290,720 KB |
| 実行使用メモリ | 9,920 KB |
| 最終ジャッジ日時 | 2025-06-06 21:55:58 |
| 合計ジャッジ時間 | 4,890 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 15 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
using ll=long long;
using ull=unsigned long long;
using P=pair<ll,ll>;
template<typename T>using minque=priority_queue<T,vector<T>,greater<T>>;
template<typename T>bool chmax(T &a,const T &b){return (a<b?(a=b,true):false);}
template<typename T>bool chmin(T &a,const T &b){return (a>b?(a=b,true):false);}
template<typename T1,typename T2>istream &operator>>(istream &is,pair<T1,T2>&p){is>>p.first>>p.second;return is;}
template<typename T1,typename T2,typename T3>istream &operator>>(istream &is,tuple<T1,T2,T3>&a){is>>std::get<0>(a)>>std::get<1>(a)>>std::get<2>(a);return is;}
template<typename T,size_t n>istream &operator>>(istream &is,array<T,n>&a){for(auto&i:a)is>>i;return is;}
template<typename T>istream &operator>>(istream &is,vector<T> &a){for(auto &i:a)is>>i;return is;}
template<typename T1,typename T2>void operator++(pair<T1,T2>&a,int n){a.first++,a.second++;}
template<typename T1,typename T2>void operator--(pair<T1,T2>&a,int n){a.first--,a.second--;}
template<typename T>void operator++(vector<T>&a,int n){for(auto &i:a)i++;}
template<typename T>void operator--(vector<T>&a,int n){for(auto &i:a)i--;}
#define overload3(_1,_2,_3,name,...) name
#define rep1(i,n) for(int i=0;i<(int)(n);i++)
#define rep2(i,l,r) for(int i=(int)(l);i<(int)(r);i++)
#define rep(...) overload3(__VA_ARGS__,rep2,rep1)(__VA_ARGS__)
#define reps(i,l,r) rep2(i,l,r)
#define all(x) x.begin(),x.end()
#define pcnt(x) __builtin_popcountll(x)
#define fin(x) return cout<<(x)<<'\n',static_cast<void>(0)
#define yn(x) cout<<((x)?"Yes\n":"No\n")
#define uniq(x) sort(all(x)),x.erase(unique(all(x)),x.end())
template<typename T>
inline int fkey(vector<T>&z,T key){return lower_bound(z.begin(),z.end(),key)-z.begin();}
ll myceil(ll a,ll b){return (a+b-1)/b;}
template<typename T,size_t n,size_t id=0>
auto vec(const int (&d)[n],const T &init=T()){
if constexpr (id<n)return vector(d[id],vec<T,n,id+1>(d,init));
else return init;
}
#ifdef LOCAL
#include<debug.h>
#define SWITCH(a,b) (a)
#else
#define debug(...) static_cast<void>(0)
#define debugg(...) static_cast<void>(0)
#define SWITCH(a,b) (b)
template<typename T1,typename T2>ostream &operator<<(ostream &os,const pair<T1,T2>&p){os<<p.first<<' '<<p.second;return os;}
#endif
struct Timer{
clock_t start;
Timer(){
start=clock();
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout<<fixed<<setprecision(16);
}
inline double now(){return (double)(clock()-start)/1000;}
#ifdef LOCAL
~Timer(){
cerr<<"time:";
cerr<<now();
cerr<<"ms\n";
}
#endif
}timer;
void SOLVE();
int main(){
int testcase=1;
//cin>>testcase;
for(int i=0;i<testcase;i++){
SOLVE();
}
}
#include<type_traits>
#include<optional>
constexpr int carmichael_constexpr(int n){
if(n==998244353)return 998244352;
if(n==1000000007)return 1000000006;
if(n<=1)return n;
int res=1;
int t=0;
while(n%2==0){
n/=2;
t++;
}
if(t==2)res=2;
else if(t>=3)res=1<<(t-2);
for(int i=3;i*i<=n;i++)if(n%i==0){
int c=0;
while(n%i==0){
n/=i;
c++;
}
int prod=i-1;
for(int j=0;j<c-1;j++)prod*=i;
res=std::lcm(res,prod);
}
if(n!=1)res=std::lcm(res,n-1);
return res;
}
template<int m>
struct mod_int{
private:
static constexpr unsigned int umod=static_cast<unsigned int>(m);
static constexpr unsigned int car=carmichael_constexpr(m);
using uint=unsigned int;
using mint=mod_int;
uint v;
static_assert(m<uint(1)<<31);
mint sqrt_impl()const{
if(this->val()<=1)return *this;
if constexpr(m%8==1){
mint b=2;
while(b.pow((m-1)/2).val()==1)b++;
int m2=m-1,e=0;
while(m2%2==0)m2>>=1,e++;
mint x=this->pow((m2-1)/2);
mint y=(*this)*x*x;
x*=*this;
mint z=b.pow(m2);
while(y.val()!=1){
int j=0;
mint t=y;
while(t.val()!=1)t*=t,j++;
z=z.pow(1<<(e-j-1));
x*=z;
z*=z;
y*=z;e=j;
}
return x;
}
else if constexpr(m%8==5){
mint ret=this->pow((m+3)/8);
if((ret*ret).val()==this->val())return ret;
else return ret*mint::raw(2).pow((m-1)/4);
}
else{
return this->pow((m+1)/4);
}
}
public:
using value_type=uint;
mod_int():v(0){}
template<typename T,std::enable_if_t<std::is_signed_v<T>,std::nullptr_t> =nullptr>
mod_int(T a){
a%=m;
if(a<0)v=a+umod;
else v=a;
}
template<typename T,std::enable_if_t<std::is_unsigned_v<T>,std::nullptr_t> =nullptr>
mod_int(T a):v(a%umod){}
static constexpr mint raw(int a){
mint ret;
ret.v=a;
return ret;
}
inline uint val()const{return this->v;}
static constexpr int mod(){return m;}
inline mint &operator+=(const mint &b){
this->v+=b.v;
if(this->v>=umod)this->v-=umod;
return *this;
}
inline mint &operator-=(const mint &b){
this->v-=b.v;
if(this->v>=umod)this->v+=umod;
return *this;
}
inline mint &operator*=(const mint &b){
this->v=((unsigned long long)this->v*b.v)%umod;
return *this;
}
inline mint &operator/=(const mint &b){
*this*=b.inv();
return *this;
}
inline mint operator+()const{return *this;}
inline mint operator-()const{return mint()-*this;}
friend inline mint operator+(const mint &a,const mint &b){return mint(a)+=b;}
friend inline mint operator-(const mint &a,const mint &b){return mint(a)-=b;}
friend inline mint operator*(const mint &a,const mint &b){return mint(a)*=b;}
friend inline mint operator/(const mint &a,const mint &b){return mint(a)/=b;}
friend inline bool operator==(const mint &a,const mint &b){return a.val()==b.val();}
friend inline bool operator!=(const mint &a,const mint &b){return !(a==b);}
inline mint operator++(int){
mint ret=*this;
*this+=mint::raw(1);
return ret;
}
inline mint operator--(int){
mint ret=*this;
*this-=mint::raw(1);
return ret;
}
mint pow(long long n)const{
mint ret=mint::raw(1),a(*this);
while(n){
if(n&1)ret*=a;
a*=a;
n>>=1;
}
return ret;
}
inline mint inv()const{
assert(this->v!=0);
return pow(car-1);
}
std::optional<mint>sqrt()const{
if(this->val()<=1||this->pow((m-1)/2)==1)return std::make_optional(this->sqrt_impl());
else return std::nullopt;
}
static constexpr unsigned int order(){return car;}
friend std::istream &operator>>(std::istream &is,mint &b){
long long a;
is>>a;
b=mint(a);
return is;
}
friend std::ostream &operator<<(std::ostream &os,const mint &b){
os<<b.val();
return os;
}
};
template<int m>
struct std::hash<mod_int<m>>{
std::size_t operator()(mod_int<m>x)const{
return std::hash<unsigned int>()(x.val());
}
};
using mint998=mod_int<998244353>;
using mint107=mod_int<1000000007>;
template<typename T>
constexpr std::enable_if_t<(std::numeric_limits<T>::digits<=32),T>pow_mod(T a,T n,T mod){
using u64=unsigned long long;
u64 res=1;
while(n>0){
if(n&1)res=((u64)res*a)%mod;
a=((u64)a*a)%mod;
n>>=1;
}
return T(res);
}
template<typename T>
constexpr std::enable_if_t<(std::numeric_limits<T>::digits>32),T>pow_mod(T a,T n,T mod){
using u128=__uint128_t;
u128 res=1;
while(n>0){
if(n&1)res=((u128)res*a)%mod;
a=((u128)a*a)%mod;
n>>=1;
}
return T(res);
}
constexpr int primitive_root_constexpr(int x){
if(x==167772161)return 3;
if(x==469762049)return 3;
if(x==754974721)return 11;
if(x==880803841)return 26;
if(x==998244353)return 3;
if(x==2)return 1;
int x2=x;
int p[20]={};
int c=0;
x--;
for(int i=2;i*i<=x;i++){
if(x%i==0){
p[c++]=i;
while(x%i==0)x/=i;
}
}
if(x!=1)p[c++]=x;
x=x2;
for(int g=2;;g++){
bool ok=true;
for(int i=0;i<c;i++)if(pow_mod(g,(x-1)/p[i],x)==1){
ok=false;
break;
}
if(ok)return g;
}
}
#include<concepts>
template<typename T>
constexpr std::enable_if_t<std::numeric_limits<T>::digits<=32,int>msb(T n){return n==0?-1:31-__builtin_clz(n);}
template<typename T>
constexpr std::enable_if_t<(std::numeric_limits<T>::digits>32),int>msb(T n){return n==0?-1:63-__builtin_clzll(n);}
template<typename T>
constexpr std::enable_if_t<std::numeric_limits<T>::digits<=32,int>lsb(T n){return n==0?-1:__builtin_ctz(n);}
template<typename T>
constexpr std::enable_if_t<(std::numeric_limits<T>::digits>32),int>lsb(T n){return n==0?-1:__builtin_ctzll(n);}
template<typename T>
constexpr std::enable_if_t<std::is_integral_v<T>,T>floor_pow2(T n){return n==0?0:T(1)<<msb(n);}
template<typename T>
constexpr std::enable_if_t<std::is_integral_v<T>,T>ceil_pow2(T n){return n<=1?1:T(1)<<(msb(n-1)+1);}
template<std::integral T>
constexpr T safe_div(T a,T b){return a/b-(a%b&&(a^b)<0);}
template<std::integral T>
constexpr T safe_ceil(T a,T b){return a/b+(a%b&&(a^b)>0);}
template<int m>
struct ntt_root{
static constexpr int rank2=lsb(m-1);
static constexpr int g=primitive_root_constexpr(m);
std::array<int,rank2+1>root,invroot;
std::array<int,std::max(0,rank2-1)>rate2,invrate2;
std::array<int,std::max(0,rank2-2)>rate3,invrate3;
constexpr ntt_root(){
root[rank2]=pow_mod(g,m>>rank2,m);
invroot[rank2]=pow_mod(root[rank2],m-2,m);
for(int i=rank2-1;i>=0;i--){
root[i]=(long long)root[i+1]*root[i+1]%m;
invroot[i]=(long long)invroot[i+1]*invroot[i+1]%m;
}
int prod=1,invprod=1;
for(int i=0;i<rank2-1;i++){
rate2[i]=(long long)root[i+2]*prod%m;
invrate2[i]=(long long)invroot[i+2]*invprod%m;
prod=(long long)prod*invroot[i+2]%m;
invprod=(long long)invprod*root[i+2]%m;
}
prod=invprod=1;
for(int i=0;i<rank2-2;i++){
rate3[i]=(long long)root[i+3]*prod%m;
invrate3[i]=(long long)invroot[i+3]*invprod%m;
prod=(long long)prod*invroot[i+3]%m;
invprod=(long long)invprod*root[i+3]%m;
}
}
};
template<typename T>
void dft(std::vector<T>&a){
static constexpr ntt_root<T::mod()>r;
static constexpr unsigned long long mod2=(unsigned long long)T::mod()*T::mod();
int n=a.size();
int h=lsb(n);
int len=0;
while(len<h){
if(h-len==1){
T rot=T::raw(1);
for(int s=0;s<(1<<len);s++){
int of=s*2;
T u=a[of],v=a[of+1]*rot;
a[of]=u+v;
a[of+1]=u-v;
rot*=T::raw(r.rate2[lsb(~(unsigned int)s)]);
}
len++;
}
else{
int p=1<<(h-len-2);
T rot=T::raw(1),imag=T::raw(r.root[2]);
for(int s=0;s<(1<<len);s++){
const unsigned long long rot1=rot.val(),rot2=rot1*rot1%T::mod(),rot3=rot1*rot2%T::mod();
int of=s<<(h-len);
for(int i=0;i<p;i++){
const unsigned long long a0=a[i+of].val(),a1=(unsigned long long)a[i+of+p].val()*rot1,a2=(unsigned long long)a[i+of+p*2].val()*rot2,a3=(unsigned long long)a[i+of+p*3].val()*rot3;
const unsigned long long m=(unsigned long long)T(a1+mod2-a3).val()*imag.val();
const unsigned long long k=mod2-a2;
a[i+of]=a0+a2+a1+a3;
a[i+of+p]=a0+a2+(mod2*2-a1-a3);
a[i+of+p*2]=a0+k+m;
a[i+of+p*3]=a0+k+(mod2-m);
}
rot*=T::raw(r.rate3[lsb(~(unsigned int)s)]);
}
len+=2;
}
}
}
template<typename T>
void idft(std::vector<T>&a){
static constexpr ntt_root<T::mod()>r;
int n=a.size();
int h=lsb(n);
int len=h;
while(len){
if(len==1){
int p=1<<(h-1);
for(int i=0;i<p;i++){
T u=a[i],v=a[i+p];
a[i]=u+v;
a[i+p]=u-v;
}
len--;
}
else{
int p=1<<(h-len);
T rot=T::raw(1),imag=T::raw(r.invroot[2]);
for(int s=0;s<(1<<(len-2));s++){
const unsigned long long rot1=rot.val(),rot2=rot1*rot1%T::mod(),rot3=rot1*rot2%T::mod();
int of=s<<(h-len+2);
for(int i=0;i<p;i++){
const unsigned long long a0=a[i+of].val(),a1=a[i+of+p].val(),a2=a[i+of+p*2].val(),a3=a[i+of+p*3].val();
const unsigned long long k=T((T::mod()+a2-a3)*imag.val()).val();
a[i+of]=a0+a1+a2+a3;
a[i+of+p]=(a0+T::mod()-a1+k)*rot1;
a[i+of+p*2]=(a0+a1+T::mod()*2-a2-a3)*rot2;
a[i+of+p*3]=(a0+T::mod()*2-a1-k)*rot3;
}
rot*=T::raw(r.invrate3[lsb(~(unsigned int)s)]);
}
len-=2;
}
}
}
template<typename T>
std::vector<T>ntt_convolution(std::vector<T> a,std::vector<T> b){
int n=a.size(),m=b.size(),s=n+m-1;
if(std::min(n,m)<60){
std::vector<T>ret(s,0);
if(n<m)for(int i=0;i<m;i++)for(int j=0;j<n;j++)ret[i+j]+=a[j]*b[i];
else for(int i=0;i<n;i++)for(int j=0;j<m;j++)ret[i+j]+=a[i]*b[j];
return ret;
}
int z=ceil_pow2(s);
a.resize(z,0);
b.resize(z,0);
dft(a),dft(b);
std::vector<T>c(z);
for(int i=0;i<z;i++)c[i]=a[i]*b[i];
idft(c);
T g=T::raw(z).inv();
for(int i=0;i<s;i++)c[i]*=g;
return {c.begin(),c.begin()+s};
}
using mint=mint998;
void SOLVE(){
int n;
cin>>n;
mint inv2=mint(2).inv();
auto mul=[&](vector<mint>a,vector<mint>b){
vector<mint>res=ntt_convolution(a,b);
reverse(all(b));
auto c=ntt_convolution(a,b);
rep(i,c.size())res[abs<int>(i+1-b.size())]+=c[i];
rep(i,res.size())res[i]*=inv2;
debug(a,b,res);
return res;
};
auto dfs=[&](auto self,int n)->vector<mint> {
if(n==0)return {1};
vector<mint>c=self(self,n/2);
auto res=mul(c,c);
if(n&1)res=mul(res,{0,1});
return res;
// vector<mint>res=ntt_convolution(c,c);
// auto d=c;
// reverse(all(d));
// d=ntt_convolution(c,d);
// rep(i,(int)c.size()-1,d.size()){
// res[i+1-c.size()]+=d[i];
// }
// rep(i,res.size())res[i]*=inv2;
// return res;
//c*d[k]=i+(c.size()-1-j)==k i-j=k+1-c.size()
};
auto ans=dfs(dfs,n);
mint pow2=mint(2).pow(n);
rep(i,ans.size())cout<<ans[i]*pow2<<" \n"[i+1==ans.size()];
}
Taiki0715