結果
問題 |
No.3172 三角関数べき乗のフーリエ級数展開
|
ユーザー |
|
提出日時 | 2025-06-06 21:58:05 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 544 ms / 2,000 ms |
コード長 | 18,594 bytes |
コンパイル時間 | 4,498 ms |
コンパイル使用メモリ | 263,596 KB |
実行使用メモリ | 13,972 KB |
最終ジャッジ日時 | 2025-06-06 21:58:14 |
合計ジャッジ時間 | 7,641 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 4 |
other | AC * 15 |
ソースコード
#include <bits/stdc++.h> #include <atcoder/all> using namespace std; using namespace atcoder; #define overload4(_1, _2, _3, _4, name, ...) name #define rep1(n) for(int i = 0; i < (int)(n); ++i) #define rep2(i, n) for(int i = 0; i < (int)(n); ++i) #define rep3(i, a, b) for(int i = (a); i < (int)(b); ++i) #define rep4(i, a, b, c) for(int i = (a); i < (int)(b); i += (c)) #define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__) #define rrep(i,n) for(int i = (int)(n) - 1; i >= 0; --i) #define ALL(a) (a).begin(), (a).end() #define Sort(a) (sort((a).begin(), (a).end())) #define RSort(a) (sort((a).rbegin(), (a).rend())) #define UNIQUE(a) (a.erase(unique((a).begin(), (a).end()), (a).end())) using i64 = int64_t; using i128 = __int128_t; using ll = long long; using ul = unsigned long long; using ull = unsigned long long; using ld = long double; using vi = vector<int>; using vll = vector<long long>; using vull = vector<unsigned long long>; using vc = vector<char>; using vst = vector<string>; using vd = vector<double>; using vld = vector<long double>; using P = pair<long long, long long>; template<class T> long long sum(const T &a){ return accumulate(a.begin(), a.end(), 0LL); } template<class T> auto min(const T &a){ return *min_element(a.begin(), a.end()); } template<class T> auto max(const T &a){ return *max_element(a.begin(), a.end()); } const long long MINF = 0x7fffffffffff; const long long INF = 0x1fffffffffffffff; const long long MOD = 998244353; const long double EPS = 1e-9; const long double PI = acos(-1); template<class T> inline bool chmax(T &a, T b) { if(a < b) { a = b; return 1; } return 0; } template<class T> inline bool chmin(T &a, T b) { if(a > b) { a = b; return 1; } return 0; } template<typename T1, typename T2> istream &operator>>(istream &is, pair<T1, T2> &p){ is >> p.first >> p.second; return is; } template<typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &p){ os << "(" << p.first << ", " << p.second << ")"; return os; } template<typename T> istream &operator>>(istream &is, vector<T> &v){ for(T &in : v) is >> in; return is; } template<typename T> ostream &operator<<(ostream &os, const vector<T> &v){ for(int i = 0; i < (int) v.size(); ++i){ os << v[i] << (i + 1 != (int) v.size() ? " " : ""); } return os; } template <typename T, typename S> ostream &operator<<(ostream &os, const map<T, S> &mp){ for(auto &[key, val] : mp){ os << key << ":" << val << " "; } return os; } template <typename T> ostream &operator<<(ostream &os, const set<T> &st){ auto itr = st.begin(); for(int i = 0; i < (int) st.size(); ++i){ os << *itr << (i + 1 != (int) st.size() ? " " : ""); itr++; } return os; } template <typename T> ostream &operator<<(ostream &os, const multiset<T> &st){ auto itr = st.begin(); for(int i = 0; i < (int) st.size(); ++i){ os << *itr << (i + 1 != (int) st.size() ? " " : ""); itr++; } return os; } template <typename T> ostream &operator<<(ostream &os, queue<T> q){ while(q.size()){ os << q.front() << " "; q.pop(); } return os; } template <typename T> ostream &operator<<(ostream &os, deque<T> q){ while(q.size()){ os << q.front() << " "; q.pop_front(); } return os; } template <typename T> ostream &operator<<(ostream &os, stack<T> st){ while(st.size()){ os << st.top() << " "; st.pop(); } return os; } template <class T, class Container, class Compare> ostream &operator<<(ostream &os, priority_queue<T, Container, Compare> pq){ while(pq.size()){ os << pq.top() << " "; pq.pop(); } return os; } template<class T, class U> void inGraph(vector<vector<T>> &G, U n, U m, bool directed = true, bool zero_index = true){ G.resize(n); for(int i = 0; i < m; i++){ int a, b; cin >> a >> b; if(!zero_index) a--, b--; G[a].push_back(b); if(!directed) G[b].push_back(a); } } template <typename T> long long binary_search(long long ok, long long ng, T check){ while(abs(ok - ng) > 1){ long long mid = (ok + ng) / 2; if(check(mid)) ok = mid; else ng = mid; } return ok; } template <typename T> long double binary_search_real(long double ok, long double ng, T check, int iter = 100){ for(int i = 0; i < iter; ++i){ long double mid = (ok + ng) / 2; if(check(mid)) ok = mid; else ng = mid; } return ok; } long long trisum(long long a, long long b){ if(a > b) return 0; long long res = ((b - a + 1) * (a + b)) / 2; return res; } template <typename T> T intpow(T x, int n){ T ret = 1; while(n > 0) { if(n & 1) (ret *= x); (x *= x); n >>= 1; } return ret; } template <typename T> T getDivision(T a, T b){ if(b == 0) return -1; if(a >= 0 && b > 0){ return a / b; } else if(a < 0 && b > 0){ return a / b - (a % b != 0); } else if(a >= 0 && b < 0){ return a / b; } else{ return a / b + (a % b != 0); } } template <typename T> T getReminder(T a, T b){ if(b == 0) return -1; if(a >= 0 && b > 0){ return a % b; } else if(a < 0 && b > 0){ return ((a % b) + b) % b; } else if(a >= 0 && b < 0){ return a % b; } else{ return (abs(b) - abs(a % b)) % b; } } template<class T, class U> inline T vin(T &vec, U n) { vec.resize(n); for(int i = 0; i < (int) n; ++i) cin >> vec[i]; return vec; } template<class T> inline void vout(T vec, string s = "\n"){ for(auto x : vec) cout << x << s; } template<class... T> void in(T&... a){ (cin >> ... >> a); } void out(){ cout << '\n'; } template<class T, class... Ts> void out(const T &a, const Ts&... b){ cout << a; (cout << ... << (cout << ' ', b)); cout << '\n'; } void fout(){ cout << endl; } template<class T, class... Ts> void fout(const T &a, const Ts&... b){ cout << a; (cout << ... << (cout << ' ', b)); cout << endl; } void debug(){ cerr << '\n'; } template<class T, class... Ts> void debug(const T &a, const Ts&... b){ cerr << a; (cerr << ... << (cerr << ' ', b)); cerr << '\n'; } template <long long Modulus> struct ModInt{ long long val; static constexpr int mod() { return Modulus; } constexpr ModInt(const long long _val = 0) noexcept : val(_val) { normalize(); } void normalize(){ val = (val % Modulus + Modulus) % Modulus; } inline ModInt &operator+=(const ModInt &rhs) noexcept { if(val += rhs.val, val >= Modulus) val -= Modulus; return *this; } inline ModInt &operator-=(const ModInt &rhs) noexcept { if(val -= rhs.val, val < 0) val += Modulus; return *this; } inline ModInt &operator*=(const ModInt &rhs) noexcept { val = val * rhs.val % Modulus; return *this; } inline ModInt &operator/=(const ModInt &rhs) noexcept { val = val * inv(rhs.val).val % Modulus; return *this; } inline ModInt &operator++() noexcept { if(++val >= Modulus) val -= Modulus; return *this; } inline ModInt operator++(int) noexcept { ModInt t = val; if(++val >= Modulus) val -= Modulus; return t; } inline ModInt &operator--() noexcept { if(--val < 0) val += Modulus; return *this; } inline ModInt operator--(int) noexcept { ModInt t = val; if(--val < 0) val += Modulus; return t; } inline ModInt operator-() const noexcept { return (Modulus - val) % Modulus; } inline ModInt inv(void) const { return inv(val); } ModInt pow(long long n) const { assert(0 <= n); ModInt x = *this, r = 1; while(n){ if(n & 1) r *= x; x *= x; n >>= 1; } return r; } ModInt inv(const long long n) const { long long a = n, b = Modulus, u = 1, v = 0; while(b){ long long t = a / b; a -= t * b; std::swap(a, b); u -= t * v; std::swap(u, v); } u %= Modulus; if(u < 0) u += Modulus; return u; } friend inline ModInt operator+(const ModInt &lhs, const ModInt &rhs) noexcept { return ModInt(lhs) += rhs; } friend inline ModInt operator-(const ModInt &lhs, const ModInt &rhs) noexcept { return ModInt(lhs) -= rhs; } friend inline ModInt operator*(const ModInt &lhs, const ModInt &rhs) noexcept { return ModInt(lhs) *= rhs; } friend inline ModInt operator/(const ModInt &lhs, const ModInt &rhs) noexcept { return ModInt(lhs) /= rhs; } friend inline bool operator==(const ModInt &lhs, const ModInt &rhs) noexcept { return lhs.val == rhs.val; } friend inline bool operator!=(const ModInt &lhs, const ModInt &rhs) noexcept { return lhs.val != rhs.val; } friend inline std::istream &operator>>(std::istream &is, ModInt &x) noexcept { is >> x.val; x.normalize(); return is; } friend inline std::ostream &operator<<(std::ostream &os, const ModInt &x) noexcept { return os << x.val; } }; namespace CRT{ inline long long mod(long long a, long long m){ return (a % m + m) % m; } long long extGCD(long long a, long long b, long long &x, long long &y){ if(b == 0){ x = 1; y = 0; return a; } long long d = extGCD(b, a % b, y, x); y -= a / b * x; return d; } std::pair<long long, long long> chineseRem(const std::vector<long long> &b, const std::vector<long long> &m) { long long r = 0, M = 1; for(int i = 0; i < (int) b.size(); i++){ long long p, q; long long d = extGCD(M, m[i], p, q); if((b[i] - r) % d != 0) return {0, -1}; long long tmp = (b[i] - r) / d * p % (m[i] / d); r += M * tmp; M *= m[i] / d; } r %= M; if(r < 0) r += M; return {r, M}; } // not coprime long long preGarner(std::vector<long long> &b, std::vector<long long> &m, const long long MOD){ long long res = 1; int n = b.size(); for(int i = 0; i < n; i++){ for(int j = 0; j < i; j++){ long long g = std::gcd(m[i], m[j]); if((b[i] - b[j]) % g != 0) return -1; m[i] /= g, m[j] /= g; // gcd の分だけ被ってるので振り分ける long long gi = std::gcd(m[i], g), gj = g / gi; do{ g = std::gcd(gi, gj); gi *= g, gj /= g; }while(g != 1); m[i] *= gi, m[j] *= gj; b[i] %= m[i], b[j] %= m[j]; } } for(auto x : m) (res *= x) %= MOD; return res; } long long garner(const std::vector<long long> &b, const std::vector<long long> &m, const long long MOD){ std::vector<long long> tm = m; tm.push_back(MOD); auto inv = [&](long long a, long long m) -> long long { long long x, y; extGCD(a, m, x, y); return mod(x, m); }; int n = b.size(); std::vector<long long> coeffs(n + 1, 1), constants(n + 1, 0); for(int i = 0; i < n; i++){ // solve "coeffs[i] * t[i] + constants[i] = b[i] (mod. m[i]) long long t = mod((b[i] - constants[i]) * inv(coeffs[i], tm[i]), tm[i]); for(int j = i + 1; j < n + 1; j++){ (constants[j] += t * coeffs[j]) %= tm[j]; (coeffs[j] *= tm[i]) %= tm[j]; } } return constants[n]; } // ax + b ≡ 0 (mod m) long long modEquation(long long a, long long b, long long m, bool is_positive = false){ a %= m; b %= m; b = (m - b) % m; long long g = std::gcd(a, m); if(b % g != 0) return -1; a /= g; b /= g; m /= g; if(is_positive && b == 0){ return m; } long long x, y; extGCD(a, m, x, y); return (b * x % m + m) % m; } } namespace NTT{ // @param n `0 <= n` // @return minimum non-negative `x` s.t. `n <= 2**x` int ceil_pow2(int n) { int x = 0; while((1U << x) < (unsigned int) (n)) x++; return x; } // @param n `1 <= n` // @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0` int bsf(unsigned int n) { return __builtin_ctz(n); } int primitive_root(int m) { if(m == 2) return 1; if(m == 167772161) return 3; if(m == 469762049) return 3; if(m == 754974721) return 11; if(m == 998244353) return 3; return 1; } template <typename T> void butterfly(std::vector<T> &a){ int g = primitive_root(T::mod()); int n = int(a.size()); int h = ceil_pow2(n); static bool first = true; static T sum_e[30]; // sum_e[i] = ies[0] * ... * ies[i - 1] * es[i] if(first){ first = false; T es[30], ies[30]; // es[i]^(2^(2+i)) == 1 int cnt2 = bsf(T::mod() - 1); T e = T(g).pow((T::mod() - 1) >> cnt2), ie = e.inv(); for(int i = cnt2; i >= 2; i--){ // e^(2^i) == 1 es[i - 2] = e; ies[i - 2] = ie; e *= e; ie *= ie; } T now = 1; for(int i = 0; i <= cnt2 - 2; i++){ sum_e[i] = es[i] * now; now *= ies[i]; } } for(int ph = 1; ph <= h; ph++){ int w = 1 << (ph - 1), p = 1 << (h - ph); T now = 1; for(int s = 0; s < w; s++){ int offset = s << (h - ph + 1); for(int i = 0; i < p; i++){ auto l = a[i + offset]; auto r = a[i + offset + p] * now; a[i + offset] = l + r; a[i + offset + p] = l - r; } now *= sum_e[bsf(~(unsigned int) (s))]; } } } template <typename T> void butterfly_inv(std::vector<T> &a) { int g = primitive_root(T::mod()); int n = int(a.size()); int h = ceil_pow2(n); static bool first = true; static T sum_ie[30]; // sum_ie[i] = es[0] * ... * es[i - 1] * ies[i] if(first){ first = false; T es[30], ies[30]; // es[i]^(2^(2+i)) == 1 int cnt2 = bsf(T::mod() - 1); T e = T(g).pow((T::mod() - 1) >> cnt2), ie = e.inv(); for(int i = cnt2; i >= 2; i--){ // e^(2^i) == 1 es[i - 2] = e; ies[i - 2] = ie; e *= e; ie *= ie; } T now = 1; for(int i = 0; i <= cnt2 - 2; i++){ sum_ie[i] = ies[i] * now; now *= es[i]; } } for(int ph = h; ph >= 1; ph--){ int w = 1 << (ph - 1), p = 1 << (h - ph); T inow = 1; for(int s = 0; s < w; s++){ int offset = s << (h - ph + 1); for(int i = 0; i < p; i++){ auto l = a[i + offset]; auto r = a[i + offset + p]; a[i + offset] = l + r; a[i + offset + p] = (unsigned long long) (T::mod() + l.val - r.val) * inow.val; } inow *= sum_ie[bsf(~(unsigned int) (s))]; } } } template <typename T> std::vector<T> convolution(std::vector<T> a, std::vector<T> b){ int n = int(a.size()), m = int(b.size()); if(!n || !m) return {}; if(std::min(n, m) <= 60) { if(n < m) { std::swap(n, m); std::swap(a, b); } std::vector<T> ans(n + m - 1); for(int i = 0; i < n; i++){ for(int j = 0; j < m; j++){ ans[i + j] += a[i] * b[j]; } } return ans; } int z = 1 << ceil_pow2(n + m - 1); a.resize(z); butterfly(a); b.resize(z); butterfly(b); for(int i = 0; i < z; i++){ a[i] *= b[i]; } butterfly_inv(a); a.resize(n + m - 1); T iz = T(z).inv(); for(int i = 0; i < n + m - 1; i++) a[i] *= iz; return a; } template <typename T> std::vector<T> convolution_mod(const std::vector<T> &a, const std::vector<T> &b, const long long MOD){ if(MOD == 998244353){ return convolution(a, b); } constexpr long long M0 = 167772161; constexpr long long M1 = 469762049; constexpr long long M2 = 754974721; using mint0 = ModInt<M0>; using mint1 = ModInt<M1>; using mint2 = ModInt<M2>; int n = a.size(), m = b.size(); std::vector<mint0> a0(n), b0(m); std::vector<mint1> a1(n), b1(m); std::vector<mint2> a2(n), b2(m); for(int i = 0; i < n; i++){ a0[i] = a[i].val; a1[i] = a[i].val; a2[i] = a[i].val; } for(int i = 0; i < m; i++){ b0[i] = b[i].val; b1[i] = b[i].val; b2[i] = b[i].val; } auto c0 = convolution(a0, b0); auto c1 = convolution(a1, b1); auto c2 = convolution(a2, b2); std::vector<T> ret(n + m - 1); for(int i = 0; i < n + m - 1; i++){ ret[i] = CRT::garner({c0[i].val, c1[i].val, c2[i].val}, {M0, M1, M2}, MOD); } return ret; } }; using mint = ModInt<MOD>; ll T; void input(){ in(T); } void solve(){ ll n; in(n); mint two = mint(2).inv(); auto dfs = [&](auto &self, ll k) -> vector<mint> { if(k == 0){ return {mint(1)}; }else if(k == 1){ return {mint(0), mint(1)}; } ll a = k / 2, b = k - a; vector<mint> x = self(self, a); vector<mint> y = self(self, b); vector<mint> yr = y; reverse(ALL(yr)); vector<mint> c1 = NTT::convolution(x, y), c2 = NTT::convolution(x, yr); vector<mint> ans(k + 1); rep(i, k + 1){ ans[i] += c1[i]; ans[abs(i - b)] += c2[i]; } rep(i, k + 1) ans[i] *= two; return ans; }; vector<mint> ans = dfs(dfs, n); mint p = mint(2).pow(n); rep(i, n + 1){ ans[i] *= p; } out(ans); } int main(){ ios::sync_with_stdio(false); cin.tie(nullptr); cout << fixed << setprecision(20); T = 1; // input(); while(T--) solve(); }