結果
| 問題 |
No.3172 三角関数べき乗のフーリエ級数展開
|
| ユーザー |
yamate11
|
| 提出日時 | 2025-06-06 23:01:41 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 26 ms / 2,000 ms |
| コード長 | 12,940 bytes |
| コンパイル時間 | 3,470 ms |
| コンパイル使用メモリ | 285,656 KB |
| 実行使用メモリ | 7,844 KB |
| 最終ジャッジ日時 | 2025-06-06 23:01:47 |
| 合計ジャッジ時間 | 4,950 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 15 |
ソースコード
#include <bits/stdc++.h>
#include <cassert>
using namespace std;
using ll = long long int;
using u64 = unsigned long long;
using pll = pair<ll, ll>;
// #include <atcoder/all>
// using namespace atcoder;
#define REP(i, a, b) for (ll i = (a); i < (b); i++)
#define REPrev(i, a, b) for (ll i = (a); i >= (b); i--)
#define ALL(coll) (coll).begin(), (coll).end()
#define SIZE(v) ((ll)((v).size()))
#define REPOUT(i, a, b, exp, sep) REP(i, (a), (b)) cout << (exp) << (i + 1 == (b) ? "" : (sep)); cout << "\n"
// @@ !! LIM(mod)
// ---- inserted library file algOp.cc
// Common definitions
// zero, one, inverse
template<typename T>
const T zero(const T& t) {
if constexpr (is_integral_v<T> || is_floating_point_v<T>) { return (T)0; }
else { return t.zero(); }
}
template<typename T>
const T one(const T& t) {
if constexpr (is_integral_v<T> || is_floating_point_v<T>) { return (T)1; }
else { return t.one(); }
}
template<typename T>
const T inverse(const T& t) {
if constexpr (is_floating_point_v<T>) { return 1.0 / t; }
else { return t.inverse(); }
}
#ifdef BOOST_MP_CPP_INT_HPP
template<> const cpp_int zero(const cpp_int& t) { return cpp_int(0); }
template<> const cpp_int one(const cpp_int& t) { return cpp_int(1); }
#endif // BOOST_MP_CPP_INT_HPP
// begin -- detection ideom
// cf. https://blog.tartanllama.xyz/detection-idiom/
namespace tartan_detail {
template <template <class...> class Trait, class Enabler, class... Args>
struct is_detected : false_type{};
template <template <class...> class Trait, class... Args>
struct is_detected<Trait, void_t<Trait<Args...>>, Args...> : true_type{};
}
template <template <class...> class Trait, class... Args>
using is_detected = typename tartan_detail::is_detected<Trait, void, Args...>::type;
// end -- detection ideom
template<typename T>
// using subst_add_t = decltype(T::subst_add(declval<typename T::value_type &>(), declval<typename T::value_type>()));
using subst_add_t = decltype(T::subst_add);
template<typename T>
using has_subst_add = is_detected<subst_add_t, T>;
template<typename T>
using add_t = decltype(T::add);
template<typename T>
using has_add = is_detected<add_t, T>;
template<typename T>
using subst_mult_t = decltype(T::subst_mult);
template<typename T>
using has_subst_mult = is_detected<subst_mult_t, T>;
template<typename T>
using mult_t = decltype(T::mult);
template<typename T>
using has_mult = is_detected<mult_t, T>;
template<typename T>
using subst_subt_t = decltype(T::subst_subt);
template<typename T>
using has_subst_subt = is_detected<subst_subt_t, T>;
template<typename T>
using subt_t = decltype(T::subt);
template<typename T>
using has_subt = is_detected<subt_t, T>;
template <typename Opdef>
struct MyAlg {
using T = typename Opdef::value_type;
using value_type = T;
T v;
MyAlg() {}
MyAlg(const T& v_) : v(v_) {}
MyAlg(T&& v_) : v(move(v_)) {}
bool operator==(MyAlg o) const { return v == o.v; }
bool operator!=(MyAlg o) const { return v != o.v; }
operator T() const { return v; }
MyAlg zero() const { return MyAlg(Opdef::zero(v)); }
MyAlg one() const { return MyAlg(Opdef::one(v)); }
MyAlg inverse() const { return MyAlg(Opdef::inverse(v)); }
MyAlg operator/=(const MyAlg& o) { return *this *= o.inverse(); }
MyAlg operator/(const MyAlg& o) const { return (*this) * o.inverse(); }
MyAlg operator-() const { return zero() - *this; }
MyAlg& operator +=(const MyAlg& o) {
if constexpr (has_subst_add<Opdef>::value) {
Opdef::subst_add(v, o.v);
return *this;
}else if constexpr (has_add<Opdef>::value) {
v = Opdef::add(v, o.v);
return *this;
}else static_assert("either subst_add or add is needed.");
}
MyAlg operator +(const MyAlg& o) const {
if constexpr (has_add<Opdef>::value) {
return MyAlg(Opdef::add(v, o.v));
}else if constexpr (has_subst_add<Opdef>::value) {
MyAlg ret(v);
Opdef::subst_add(ret.v, o.v);
return ret;
}else static_assert("either subst_add or add is needed.");
}
MyAlg& operator *=(const MyAlg& o) {
if constexpr (has_subst_mult<Opdef>::value) {
Opdef::subst_mult(v, o.v);
return *this;
}else if constexpr (has_mult<Opdef>::value) {
v = Opdef::mult(v, o.v);
return *this;
}else static_assert("either subst_mult or mult is needed.");
}
MyAlg operator *(const MyAlg& o) const {
if constexpr (has_mult<Opdef>::value) {
return MyAlg(Opdef::mult(v, o.v));
}else if constexpr (has_subst_mult<Opdef>::value) {
MyAlg ret(v);
Opdef::subst_mult(ret.v, o.v);
return ret;
}else static_assert("either subst_mult or mult is needed.");
}
MyAlg& operator -=(const MyAlg& o) {
if constexpr (has_subst_subt<Opdef>::value) {
Opdef::subst_subt(v, o.v);
return *this;
}else if constexpr (has_subt<Opdef>::value) {
v = Opdef::subt(v, o.v);
return *this;
}else static_assert("either subst_subt or subt is needed.");
}
MyAlg operator -(const MyAlg& o) const {
if constexpr (has_subt<Opdef>::value) {
return MyAlg(Opdef::subt(v, o.v));
}else if constexpr (has_subst_subt<Opdef>::value) {
MyAlg ret(v);
Opdef::subst_subt(ret.v, o.v);
return ret;
}else static_assert("either subst_subt or subt is needed.");
}
friend istream& operator >>(istream& is, MyAlg& t) { is >> t.v; return is; }
friend ostream& operator <<(ostream& os, const MyAlg& t) { os << t.v; return os; }
};
// ---- end algOp.cc
// ---- inserted function f:gcd from util.cc
// auto [g, s, t] = eGCD(a, b)
// g == gcd(|a|, |b|) and as + bt == g
// It guarantees that max(|s|, |t|) <= max(|a| / g, |b| / g) (when g != 0)
// Note that gcd(a, 0) == gcd(0, a) == a.
template<typename INT=ll>
tuple<INT, INT, INT> eGCD(INT a, INT b) {
INT sa = a < 0 ? -1 : 1;
INT ta = 0;
INT za = a * sa;
INT sb = 0;
INT tb = b < 0 ? -1 : 1;
INT zb = b * tb;
while (zb != 0) {
INT q = za / zb;
INT r = za % zb;
za = zb;
zb = r;
INT new_sb = sa - q * sb;
sa = sb;
sb = new_sb;
INT new_tb = ta - q * tb;
ta = tb;
tb = new_tb;
}
return {za, sa, ta};
}
pair<ll, ll> crt_sub(ll a1, ll x1, ll a2, ll x2) {
// DLOGKL("crt_sub", a1, x1, a2, x2);
a1 = a1 % x1;
a2 = a2 % x2;
auto [g, s, t] = eGCD(x1, -x2);
ll gq = (a2 - a1) / g;
ll gr = (a2 - a1) % g;
if (gr != 0) return {-1, -1};
s *= gq;
t *= gq;
ll z = x1 / g * x2;
// DLOGK(z);
s = s % (x2 / g);
ll r = (x1 * s + a1) % z;
// DLOGK(r);
if (r < 0) r += z;
// DLOGK(r);
return {r, z};
};
// Chinese Remainder Theorem
//
// r = crt(a1, x1, a2, x2)
// ==> r = a1 (mod x1); r = a2 (mod x2); 0 <= r < lcm(x1, x2)
// If no such r exists, returns -1
// Note: x1 and x2 should >= 1. a1 and a2 can be negative or zero.
//
// r = crt(as, xs)
// ==> for all i. r = as[i] (mod xs[i]); 0 <= r < lcm(xs)
// If no such r exists, returns -1
// Note: xs[i] should >= 1. as[i] can be negative or zero.
// It should hold: len(xs) == len(as) > 0
ll crt(ll a1, ll x1, ll a2, ll x2) { return crt_sub(a1, x1, a2, x2).first; }
ll crt(vector<ll> as, vector<ll> xs) {
// DLOGKL("crt", as, xs);
assert(xs.size() == as.size() && xs.size() > 0);
ll r = as[0];
ll z = xs[0];
for (size_t i = 1; i < xs.size(); i++) {
// DLOGK(i, r, z, as[i], xs[i]);
tie(r, z) = crt_sub(r, z, as[i], xs[i]);
// DLOGK(r, z);
if (r == -1) return -1;
}
return r;
}
// ---- end f:gcd
// ---- inserted library file mod.cc
template<int mod=0, typename INT=ll>
struct FpG { // G for General
static INT dyn_mod;
static INT getMod() {
if (mod == 0) return dyn_mod;
else return (INT)mod;
}
// Effective only when mod == 0.
// _mod must be less than the half of the maximum value of INT.
static void setMod(INT _mod) {
dyn_mod = _mod;
}
static INT _conv(INT x) {
if (x >= getMod()) return x % getMod();
if (x >= 0) return x;
if (x >= -getMod()) return x + getMod();
INT y = x % getMod();
if (y == 0) return 0;
return y + getMod();
}
INT val;
FpG(INT t = 0) : val(_conv(t)) {}
FpG(const FpG& t) : val(t.val) {}
FpG& operator =(const FpG& t) { val = t.val; return *this; }
FpG& operator =(INT t) { val = _conv(t); return *this; }
FpG& operator +=(const FpG& t) {
val += t.val;
if (val >= getMod()) val -= getMod();
return *this;
}
FpG& operator -=(const FpG& t) {
val -= t.val;
if (val < 0) val += getMod();
return *this;
}
FpG& operator *=(const FpG& t) {
val = (val * t.val) % getMod();
return *this;
}
FpG inv() const {
if (val == 0) { throw runtime_error("FpG::inv(): called for zero."); }
auto [g, u, v] = eGCD(val, getMod());
if (g != 1) { throw runtime_error("FpG::inv(): not co-prime."); }
return FpG(u);
}
FpG zero() const { return (FpG)0; }
FpG one() const { return (FpG)1; }
FpG inverse() const { return inv(); }
FpG& operator /=(const FpG& t) {
return (*this) *= t.inv();
}
FpG operator +(const FpG& t) const { return FpG(val) += t; }
FpG operator -(const FpG& t) const { return FpG(val) -= t; }
FpG operator *(const FpG& t) const { return FpG(val) *= t; }
FpG operator /(const FpG& t) const { return FpG(val) /= t; }
FpG operator -() const { return FpG(-val); }
bool operator ==(const FpG& t) const { return val == t.val; }
bool operator !=(const FpG& t) const { return val != t.val; }
operator INT() const { return val; }
friend FpG operator +(INT x, const FpG& y) { return FpG(x) + y; }
friend FpG operator -(INT x, const FpG& y) { return FpG(x) - y; }
friend FpG operator *(INT x, const FpG& y) { return FpG(x) * y; }
friend FpG operator /(INT x, const FpG& y) { return FpG(x) / y; }
friend bool operator ==(INT x, const FpG& y) { return FpG(x) == y; }
friend bool operator !=(INT x, const FpG& y) { return FpG(x) != y; }
friend FpG operator +(const FpG& x, INT y) { return x + FpG(y); }
friend FpG operator -(const FpG& x, INT y) { return x - FpG(y); }
friend FpG operator *(const FpG& x, INT y) { return x * FpG(y); }
friend FpG operator /(const FpG& x, INT y) { return x / FpG(y); }
friend bool operator ==(const FpG& x, INT y) { return x == FpG(y); }
friend bool operator !=(const FpG& x, INT y) { return x != FpG(y); }
/* The following are needed to avoid warnings in cases such as FpG x; x = 5 + x; rather than x = FpG(5) + x; */
friend FpG operator +(int x, const FpG& y) { return FpG(x) + y; }
friend FpG operator -(int x, const FpG& y) { return FpG(x) - y; }
friend FpG operator *(int x, const FpG& y) { return FpG(x) * y; }
friend FpG operator /(int x, const FpG& y) { return FpG(x) / y; }
friend bool operator ==(int x, const FpG& y) { return FpG(x) == y; }
friend bool operator !=(int x, const FpG& y) { return FpG(x) != y; }
friend FpG operator +(const FpG& x, int y) { return x + FpG(y); }
friend FpG operator -(const FpG& x, int y) { return x - FpG(y); }
friend FpG operator *(const FpG& x, int y) { return x * FpG(y); }
friend FpG operator /(const FpG& x, int y) { return x / FpG(y); }
friend bool operator ==(const FpG& x, int y) { return x == FpG(y); }
friend bool operator !=(const FpG& x, int y) { return x != FpG(y); }
friend istream& operator>> (istream& is, FpG& t) {
INT x; is >> x;
t = x;
return is;
}
friend ostream& operator<< (ostream& os, const FpG& t) {
os << t.val;
return os;
}
};
template<int mod, typename INT>
INT FpG<mod, INT>::dyn_mod;
template<typename T>
class Comb {
int nMax;
vector<T> vFact;
vector<T> vInvFact;
public:
Comb(int nm) : nMax(nm), vFact(nm+1), vInvFact(nm+1) {
vFact[0] = 1;
for (int i = 1; i <= nMax; i++) vFact[i] = i * vFact[i-1];
vInvFact.at(nMax) = (T)1 / vFact[nMax];
for (int i = nMax; i >= 1; i--) vInvFact[i-1] = i * vInvFact[i];
}
T fact(int n) { return vFact[n]; }
T binom(int n, int r) {
if (r < 0 || r > n) return (T)0;
return vFact[n] * vInvFact[r] * vInvFact[n-r];
}
T binom_dup(int n, int r) { return binom(n + r - 1, r); }
// The number of permutation extracting r from n.
T perm(int n, int r) {
return vFact[n] * vInvFact[n-r];
}
};
constexpr int primeA = 1'000'000'007;
constexpr int primeB = 998'244'353; // '
using FpA = FpG<primeA, ll>;
using FpB = FpG<primeB, ll>;
// ---- end mod.cc
// @@ !! LIM -- end mark --
using Fp = FpB;
int main(/* int argc, char *argv[] */) {
ios_base::sync_with_stdio(false);
cin.tie(nullptr);
cout << setprecision(20);
ll N; cin >> N;
Comb<Fp> cb(N);
if (N == 0) {
cout << "1\n";
return 0;
}
vector<Fp> A(N + 1, Fp(0));
REP(i, 0, N) {
ll j = 2 - N + 2 * i;
Fp p = cb.binom(N - 1, i) * 2;
if (j < 0) A[-j] += p;
else A[j] += p;
}
REPOUT(i, 0, N + 1, A[i], " ");
return 0;
}
yamate11