結果
| 問題 |
No.1917 LCMST
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-06-12 11:30:05 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 612 ms / 4,000 ms |
| コード長 | 10,682 bytes |
| コンパイル時間 | 4,322 ms |
| コンパイル使用メモリ | 329,188 KB |
| 実行使用メモリ | 123,580 KB |
| 最終ジャッジ日時 | 2025-06-12 11:30:29 |
| 合計ジャッジ時間 | 20,643 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 42 |
ソースコード
// competitive-verifier: PROBLEM
#ifdef ATCODER
#pragma GCC target("sse4.2,avx512f,avx512dq,avx512ifma,avx512cd,avx512bw,avx512vl,bmi2")
#endif
#pragma GCC optimize("Ofast,fast-math,unroll-all-loops")
#include <bits/stdc++.h>
#ifndef ATCODER
#pragma GCC target("sse4.2,avx2,bmi2")
#endif
template <class T, class U>
constexpr bool chmax(T &a, const U &b) {
return a < (T)b ? a = (T)b, true : false;
}
template <class T, class U>
constexpr bool chmin(T &a, const U &b) {
return (T)b < a ? a = (T)b, true : false;
}
constexpr std::int64_t INF = 1000000000000000003;
constexpr int Inf = 1000000003;
constexpr double EPS = 1e-7;
constexpr double PI = 3.14159265358979323846;
#define FOR(i, m, n) for (int i = (m); i < int(n); ++i)
#define FORR(i, m, n) for (int i = (m) - 1; i >= int(n); --i)
#define FORL(i, m, n) for (std::int64_t i = (m); i < std::int64_t(n); ++i)
#define rep(i, n) FOR (i, 0, n)
#define repn(i, n) FOR (i, 1, n + 1)
#define repr(i, n) FORR (i, n, 0)
#define repnr(i, n) FORR (i, n + 1, 1)
#define all(s) (s).begin(), (s).end()
struct Sonic {
Sonic() {
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
std::cout << std::fixed << std::setprecision(20);
}
constexpr void operator()() const {}
} sonic;
struct increment_impl {
template <class T>
const increment_impl &operator>>(std::vector<T> &v) const {
for (auto &x : v) ++x;
return *this;
}
} Inc;
struct decrement_impl {
template <class T>
const decrement_impl &operator>>(std::vector<T> &v) const {
for (auto &x : v) --x;
return *this;
}
} Dec;
struct sort_impl {
template <class T>
const sort_impl &operator>>(std::vector<T> &v) const {
std::sort(v.begin(), v.end());
return *this;
}
} Sort;
struct unique_impl {
template <class T>
const unique_impl &operator>>(std::vector<T> &v) const {
std::sort(v.begin(), v.end());
v.erase(std::unique(v.begin(), v.end()), v.end());
return *this;
}
} Uniq;
using namespace std;
using ll = std::int64_t;
using ld = long double;
template <class T, class U>
std::istream &operator>>(std::istream &is, std::pair<T, U> &p) {
return is >> p.first >> p.second;
}
template <class T>
std::istream &operator>>(std::istream &is, std::vector<T> &v) {
for (T &i : v) is >> i;
return is;
}
template <class T, class U>
std::ostream &operator<<(std::ostream &os, const std::pair<T, U> &p) {
return os << '(' << p.first << ',' << p.second << ')';
}
template <class T>
std::ostream &operator<<(std::ostream &os, const std::vector<T> &v) {
for (auto it = v.begin(); it != v.end(); ++it) os << (it == v.begin() ? "" : " ") << *it;
return os;
}
template <class Head, class... Tail>
void co(Head &&head, Tail &&...tail) {
if constexpr (sizeof...(tail) == 0) std::cout << head << '\n';
else std::cout << head << ' ', co(std::forward<Tail>(tail)...);
}
template <class Head, class... Tail>
void ce(Head &&head, Tail &&...tail) {
if constexpr (sizeof...(tail) == 0) std::cerr << head << '\n';
else std::cerr << head << ' ', ce(std::forward<Tail>(tail)...);
}
void Yes(bool is_correct = true) { std::cout << (is_correct ? "Yes\n" : "No\n"); }
void No(bool is_not_correct = true) { Yes(!is_not_correct); }
void YES(bool is_correct = true) { std::cout << (is_correct ? "YES\n" : "NO\n"); }
void NO(bool is_not_correct = true) { YES(!is_not_correct); }
void Takahashi(bool is_correct = true) { std::cout << (is_correct ? "Takahashi" : "Aoki") << '\n'; }
void Aoki(bool is_not_correct = true) { Takahashi(!is_not_correct); }
/// @brief 重み付きグラフ
template <class T>
struct Graph {
private:
struct _edge {
constexpr _edge() : _from(), _to(), _weight() {}
constexpr _edge(int from, int to, T weight) : _from(from), _to(to), _weight(weight) {}
constexpr bool operator<(const _edge &rhs) const { return weight() < rhs.weight(); }
constexpr bool operator>(const _edge &rhs) const { return rhs < *this; }
constexpr int from() const { return _from; }
constexpr int to() const { return _to; }
constexpr T weight() const { return _weight; }
private:
int _from, _to;
T _weight;
};
public:
using edge_type = typename Graph<T>::_edge;
Graph() : _size(), edges() {}
Graph(int v) : _size(v), edges(v) {}
const auto &operator[](int i) const { return edges[i]; }
auto &operator[](int i) { return edges[i]; }
const auto begin() const { return edges.begin(); }
auto begin() { return edges.begin(); }
const auto end() const { return edges.end(); }
auto end() { return edges.end(); }
constexpr int size() const { return _size; }
void add_edge(const edge_type &e) { edges[e.from()].emplace_back(e); }
void add_edge(int from, int to, T weight = T(1)) { edges[from].emplace_back(from, to, weight); }
void add_edges(int from, int to, T weight = T(1)) {
edges[from].emplace_back(from, to, weight);
edges[to].emplace_back(to, from, weight);
}
void input_edge(int m, int base = 1) {
for (int i = 0; i < m; ++i) {
int from, to;
T weight;
std::cin >> from >> to >> weight;
add_edge(from - base, to - base, weight);
}
}
void input_edges(int m, int base = 1) {
for (int i = 0; i < m; ++i) {
int from, to;
T weight;
std::cin >> from >> to >> weight;
add_edges(from - base, to - base, weight);
}
}
private:
int _size;
std::vector<std::vector<edge_type>> edges;
};
/// @brief 重みなしグラフ
template <>
struct Graph<void> {
private:
struct _edge {
constexpr _edge() : _from(), _to() {}
constexpr _edge(int from, int to) : _from(from), _to(to) {}
constexpr int from() const { return _from; }
constexpr int to() const { return _to; }
constexpr int weight() const { return 1; }
constexpr bool operator<(const _edge &rhs) const { return weight() < rhs.weight(); }
constexpr bool operator>(const _edge &rhs) const { return rhs < *this; }
private:
int _from, _to;
};
public:
using edge_type = typename Graph<void>::_edge;
Graph() : _size(), edges() {}
Graph(int v) : _size(v), edges(v) {}
const auto &operator[](int i) const { return edges[i]; }
auto &operator[](int i) { return edges[i]; }
const auto begin() const { return edges.begin(); }
auto begin() { return edges.begin(); }
const auto end() const { return edges.end(); }
auto end() { return edges.end(); }
constexpr int size() const { return _size; }
void add_edge(const edge_type &e) { edges[e.from()].emplace_back(e); }
void add_edge(int from, int to) { edges[from].emplace_back(from, to); }
void add_edges(int from, int to) {
edges[from].emplace_back(from, to);
edges[to].emplace_back(to, from);
}
void input_edge(int m, int base = 1) {
for (int i = 0; i < m; ++i) {
int from, to;
std::cin >> from >> to;
add_edge(from - base, to - base);
}
}
void input_edges(int m, int base = 1) {
for (int i = 0; i < m; ++i) {
int from, to;
std::cin >> from >> to;
add_edges(from - base, to - base);
}
}
private:
int _size;
std::vector<std::vector<edge_type>> edges;
};
#include <concepts>
/// @brief 素集合データ構造
/// @details Implement (union by size) + (path compression)
/// @see https://github.com/atcoder/ac-library/blob/master/atcoder/dsu.hpp
struct union_find {
union_find() = default;
explicit union_find(int _n) : _rank(_n), data(_n, -1) {}
const int &operator[](std::size_t x) const { return data[x]; }
int &operator[](std::size_t x) { return data[x]; }
int root(int x) { return data[x] < 0 ? x : data[x] = root(data[x]); }
int get_root(int x) { return root(x); }
bool is_root(int x) const { return data[x] < 0; }
bool same(int x, int y) { return root(x) == root(y); }
bool is_same(int x, int y) { return same(x, y); }
int rank() { return _rank; }
int size(int x) { return -(data[root(x)]); }
int get_size(int x) { return size(x); }
std::vector<int> leaders() {
std::vector<int> res;
for (int i = 0; i < (int)data.size(); ++i) {
if (is_root(i)) res.emplace_back(i);
}
return res;
}
bool unite(int x, int y) {
x = root(x), y = root(y);
if (x == y) return false;
--_rank;
if (data[x] > data[y]) std::swap(x, y);
data[x] += data[y];
data[y] = x;
return true;
}
template <class F>
requires std::invocable<F, int, int, bool>
bool unite(int x, int y, F f) {
x = root(x), y = root(y);
bool swapped = false;
if (x != y) {
if (data[x] > data[y]) std::swap(x, y), swapped = true;
data[x] += data[y];
data[y] = x;
}
f(x, y, swapped);
return x != y;
}
template <class F>
requires std::invocable<F, int, int>
bool unite(int x, int y, F f) {
x = root(x), y = root(y);
if (x != y) {
if (data[x] > data[y]) std::swap(x, y);
data[x] += data[y];
data[y] = x;
}
f(x, y);
return x != y;
}
private:
int _rank;
std::vector<int> data;
};
/// @brief クラスカル法
template <class T>
std::vector<typename Graph<T>::edge_type> kruskal(const Graph<T> &g) {
using _edge = typename Graph<T>::edge_type;
union_find uf(g.size());
std::vector<_edge> res;
std::vector<_edge> edge_list;
for (auto &v : g) {
for (auto &e : v) edge_list.emplace_back(e);
}
std::sort(edge_list.begin(), edge_list.end());
for (auto &e : edge_list) {
if (uf.unite(e.from(), e.to())) res.emplace_back(e);
}
return res;
}
int main(void) {
int n;
cin >> n;
vector<int> a(n);
cin >> a;
int k = 100000;
vector<int> c(k + 1);
rep (i, n) {
++c[a[i]];
}
ll ans = 0;
repn (i, k) {
if (c[i])
ans += (ll)(c[i] - 1) * i;
}
Graph<ll> g(k + 1);
repn (i, k) {
vector<int> u;
for (int j = i; j <= k; j += i) {
if (c[j])
u.emplace_back(j);
}
for (int l = 1; l < (int)u.size(); ++l) {
g.add_edges(u[0], u[l], lcm((ll)u[0], u[l]));
}
}
auto v = kruskal(g);
for (auto e : v) ans += e.weight();
co(ans);
return 0;
}