結果
問題 |
No.1917 LCMST
|
ユーザー |
|
提出日時 | 2025-06-12 11:30:05 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 612 ms / 4,000 ms |
コード長 | 10,682 bytes |
コンパイル時間 | 4,322 ms |
コンパイル使用メモリ | 329,188 KB |
実行使用メモリ | 123,580 KB |
最終ジャッジ日時 | 2025-06-12 11:30:29 |
合計ジャッジ時間 | 20,643 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 42 |
ソースコード
// competitive-verifier: PROBLEM #ifdef ATCODER #pragma GCC target("sse4.2,avx512f,avx512dq,avx512ifma,avx512cd,avx512bw,avx512vl,bmi2") #endif #pragma GCC optimize("Ofast,fast-math,unroll-all-loops") #include <bits/stdc++.h> #ifndef ATCODER #pragma GCC target("sse4.2,avx2,bmi2") #endif template <class T, class U> constexpr bool chmax(T &a, const U &b) { return a < (T)b ? a = (T)b, true : false; } template <class T, class U> constexpr bool chmin(T &a, const U &b) { return (T)b < a ? a = (T)b, true : false; } constexpr std::int64_t INF = 1000000000000000003; constexpr int Inf = 1000000003; constexpr double EPS = 1e-7; constexpr double PI = 3.14159265358979323846; #define FOR(i, m, n) for (int i = (m); i < int(n); ++i) #define FORR(i, m, n) for (int i = (m) - 1; i >= int(n); --i) #define FORL(i, m, n) for (std::int64_t i = (m); i < std::int64_t(n); ++i) #define rep(i, n) FOR (i, 0, n) #define repn(i, n) FOR (i, 1, n + 1) #define repr(i, n) FORR (i, n, 0) #define repnr(i, n) FORR (i, n + 1, 1) #define all(s) (s).begin(), (s).end() struct Sonic { Sonic() { std::ios::sync_with_stdio(false); std::cin.tie(nullptr); std::cout << std::fixed << std::setprecision(20); } constexpr void operator()() const {} } sonic; struct increment_impl { template <class T> const increment_impl &operator>>(std::vector<T> &v) const { for (auto &x : v) ++x; return *this; } } Inc; struct decrement_impl { template <class T> const decrement_impl &operator>>(std::vector<T> &v) const { for (auto &x : v) --x; return *this; } } Dec; struct sort_impl { template <class T> const sort_impl &operator>>(std::vector<T> &v) const { std::sort(v.begin(), v.end()); return *this; } } Sort; struct unique_impl { template <class T> const unique_impl &operator>>(std::vector<T> &v) const { std::sort(v.begin(), v.end()); v.erase(std::unique(v.begin(), v.end()), v.end()); return *this; } } Uniq; using namespace std; using ll = std::int64_t; using ld = long double; template <class T, class U> std::istream &operator>>(std::istream &is, std::pair<T, U> &p) { return is >> p.first >> p.second; } template <class T> std::istream &operator>>(std::istream &is, std::vector<T> &v) { for (T &i : v) is >> i; return is; } template <class T, class U> std::ostream &operator<<(std::ostream &os, const std::pair<T, U> &p) { return os << '(' << p.first << ',' << p.second << ')'; } template <class T> std::ostream &operator<<(std::ostream &os, const std::vector<T> &v) { for (auto it = v.begin(); it != v.end(); ++it) os << (it == v.begin() ? "" : " ") << *it; return os; } template <class Head, class... Tail> void co(Head &&head, Tail &&...tail) { if constexpr (sizeof...(tail) == 0) std::cout << head << '\n'; else std::cout << head << ' ', co(std::forward<Tail>(tail)...); } template <class Head, class... Tail> void ce(Head &&head, Tail &&...tail) { if constexpr (sizeof...(tail) == 0) std::cerr << head << '\n'; else std::cerr << head << ' ', ce(std::forward<Tail>(tail)...); } void Yes(bool is_correct = true) { std::cout << (is_correct ? "Yes\n" : "No\n"); } void No(bool is_not_correct = true) { Yes(!is_not_correct); } void YES(bool is_correct = true) { std::cout << (is_correct ? "YES\n" : "NO\n"); } void NO(bool is_not_correct = true) { YES(!is_not_correct); } void Takahashi(bool is_correct = true) { std::cout << (is_correct ? "Takahashi" : "Aoki") << '\n'; } void Aoki(bool is_not_correct = true) { Takahashi(!is_not_correct); } /// @brief 重み付きグラフ template <class T> struct Graph { private: struct _edge { constexpr _edge() : _from(), _to(), _weight() {} constexpr _edge(int from, int to, T weight) : _from(from), _to(to), _weight(weight) {} constexpr bool operator<(const _edge &rhs) const { return weight() < rhs.weight(); } constexpr bool operator>(const _edge &rhs) const { return rhs < *this; } constexpr int from() const { return _from; } constexpr int to() const { return _to; } constexpr T weight() const { return _weight; } private: int _from, _to; T _weight; }; public: using edge_type = typename Graph<T>::_edge; Graph() : _size(), edges() {} Graph(int v) : _size(v), edges(v) {} const auto &operator[](int i) const { return edges[i]; } auto &operator[](int i) { return edges[i]; } const auto begin() const { return edges.begin(); } auto begin() { return edges.begin(); } const auto end() const { return edges.end(); } auto end() { return edges.end(); } constexpr int size() const { return _size; } void add_edge(const edge_type &e) { edges[e.from()].emplace_back(e); } void add_edge(int from, int to, T weight = T(1)) { edges[from].emplace_back(from, to, weight); } void add_edges(int from, int to, T weight = T(1)) { edges[from].emplace_back(from, to, weight); edges[to].emplace_back(to, from, weight); } void input_edge(int m, int base = 1) { for (int i = 0; i < m; ++i) { int from, to; T weight; std::cin >> from >> to >> weight; add_edge(from - base, to - base, weight); } } void input_edges(int m, int base = 1) { for (int i = 0; i < m; ++i) { int from, to; T weight; std::cin >> from >> to >> weight; add_edges(from - base, to - base, weight); } } private: int _size; std::vector<std::vector<edge_type>> edges; }; /// @brief 重みなしグラフ template <> struct Graph<void> { private: struct _edge { constexpr _edge() : _from(), _to() {} constexpr _edge(int from, int to) : _from(from), _to(to) {} constexpr int from() const { return _from; } constexpr int to() const { return _to; } constexpr int weight() const { return 1; } constexpr bool operator<(const _edge &rhs) const { return weight() < rhs.weight(); } constexpr bool operator>(const _edge &rhs) const { return rhs < *this; } private: int _from, _to; }; public: using edge_type = typename Graph<void>::_edge; Graph() : _size(), edges() {} Graph(int v) : _size(v), edges(v) {} const auto &operator[](int i) const { return edges[i]; } auto &operator[](int i) { return edges[i]; } const auto begin() const { return edges.begin(); } auto begin() { return edges.begin(); } const auto end() const { return edges.end(); } auto end() { return edges.end(); } constexpr int size() const { return _size; } void add_edge(const edge_type &e) { edges[e.from()].emplace_back(e); } void add_edge(int from, int to) { edges[from].emplace_back(from, to); } void add_edges(int from, int to) { edges[from].emplace_back(from, to); edges[to].emplace_back(to, from); } void input_edge(int m, int base = 1) { for (int i = 0; i < m; ++i) { int from, to; std::cin >> from >> to; add_edge(from - base, to - base); } } void input_edges(int m, int base = 1) { for (int i = 0; i < m; ++i) { int from, to; std::cin >> from >> to; add_edges(from - base, to - base); } } private: int _size; std::vector<std::vector<edge_type>> edges; }; #include <concepts> /// @brief 素集合データ構造 /// @details Implement (union by size) + (path compression) /// @see https://github.com/atcoder/ac-library/blob/master/atcoder/dsu.hpp struct union_find { union_find() = default; explicit union_find(int _n) : _rank(_n), data(_n, -1) {} const int &operator[](std::size_t x) const { return data[x]; } int &operator[](std::size_t x) { return data[x]; } int root(int x) { return data[x] < 0 ? x : data[x] = root(data[x]); } int get_root(int x) { return root(x); } bool is_root(int x) const { return data[x] < 0; } bool same(int x, int y) { return root(x) == root(y); } bool is_same(int x, int y) { return same(x, y); } int rank() { return _rank; } int size(int x) { return -(data[root(x)]); } int get_size(int x) { return size(x); } std::vector<int> leaders() { std::vector<int> res; for (int i = 0; i < (int)data.size(); ++i) { if (is_root(i)) res.emplace_back(i); } return res; } bool unite(int x, int y) { x = root(x), y = root(y); if (x == y) return false; --_rank; if (data[x] > data[y]) std::swap(x, y); data[x] += data[y]; data[y] = x; return true; } template <class F> requires std::invocable<F, int, int, bool> bool unite(int x, int y, F f) { x = root(x), y = root(y); bool swapped = false; if (x != y) { if (data[x] > data[y]) std::swap(x, y), swapped = true; data[x] += data[y]; data[y] = x; } f(x, y, swapped); return x != y; } template <class F> requires std::invocable<F, int, int> bool unite(int x, int y, F f) { x = root(x), y = root(y); if (x != y) { if (data[x] > data[y]) std::swap(x, y); data[x] += data[y]; data[y] = x; } f(x, y); return x != y; } private: int _rank; std::vector<int> data; }; /// @brief クラスカル法 template <class T> std::vector<typename Graph<T>::edge_type> kruskal(const Graph<T> &g) { using _edge = typename Graph<T>::edge_type; union_find uf(g.size()); std::vector<_edge> res; std::vector<_edge> edge_list; for (auto &v : g) { for (auto &e : v) edge_list.emplace_back(e); } std::sort(edge_list.begin(), edge_list.end()); for (auto &e : edge_list) { if (uf.unite(e.from(), e.to())) res.emplace_back(e); } return res; } int main(void) { int n; cin >> n; vector<int> a(n); cin >> a; int k = 100000; vector<int> c(k + 1); rep (i, n) { ++c[a[i]]; } ll ans = 0; repn (i, k) { if (c[i]) ans += (ll)(c[i] - 1) * i; } Graph<ll> g(k + 1); repn (i, k) { vector<int> u; for (int j = i; j <= k; j += i) { if (c[j]) u.emplace_back(j); } for (int l = 1; l < (int)u.size(); ++l) { g.add_edges(u[0], u[l], lcm((ll)u[0], u[l])); } } auto v = kruskal(g); for (auto e : v) ans += e.weight(); co(ans); return 0; }