結果
| 問題 |
No.2456 Stamp Art
|
| コンテスト | |
| ユーザー |
gew1fw
|
| 提出日時 | 2025-06-12 12:55:53 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
MLE
|
| 実行時間 | - |
| コード長 | 2,436 bytes |
| コンパイル時間 | 371 ms |
| コンパイル使用メモリ | 82,364 KB |
| 実行使用メモリ | 513,744 KB |
| 最終ジャッジ日時 | 2025-06-12 13:01:35 |
| 合計ジャッジ時間 | 31,727 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 21 MLE * 2 |
ソースコード
import sys
def main():
H, W = map(int, sys.stdin.readline().split())
grid = []
for _ in range(H):
line = sys.stdin.readline().strip()
grid.append(line)
# Convert grid to binary matrix (1 for black, 0 for white)
bin_grid = [[0]*(W+1) for _ in range(H+1)]
for i in range(H):
for j in range(W):
if grid[i][j] == '#':
bin_grid[i+1][j+1] = 1
# Compute prefix sums
prefix = [[0]*(W+2) for _ in range(H+2)]
for i in range(1, H+1):
row_sum = 0
for j in range(1, W+1):
row_sum += bin_grid[i][j]
prefix[i][j] = prefix[i-1][j] + row_sum
low = 1
high = min(H, W)
answer = 0
while low <= high:
mid = (low + high) // 2
valid = False
# Initialize difference array
diff = [[0]*(W+2) for _ in range(H+2)]
found = False
for i in range(1, H - mid + 2):
for j in range(1, W - mid + 2):
a = i
b = j
c = a + mid - 1
d = b + mid - 1
if c > H or d > W:
continue
# Calculate sum using prefix sums
total = prefix[c][d] - prefix[a-1][d] - prefix[c][b-1] + prefix[a-1][b-1]
if total == mid * mid:
# Mark the square in the difference array
diff[a][b] += 1
diff[a][d+1] -= 1
diff[c+1][b] -= 1
diff[c+1][d+1] += 1
found = True
# Compute coverage using the difference array
coverage = [[0]*(W+2) for _ in range(H+2)]
all_covered = True
for i in range(1, H+1):
row_sum = 0
for j in range(1, W+1):
row_sum += diff[i][j]
coverage[i][j] = coverage[i-1][j] + row_sum
# Check all black cells
for i in range(1, H+1):
for j in range(1, W+1):
if bin_grid[i][j] == 1 and coverage[i][j] <= 0:
all_covered = False
break
if not all_covered:
break
if all_covered and found:
answer = mid
low = mid + 1
else:
high = mid - 1
print(answer)
if __name__ == "__main__":
main()
gew1fw