結果
| 問題 | 
                            No.2019 Digits Filling for All Substrings
                             | 
                    
| コンテスト | |
| ユーザー | 
                             gew1fw
                         | 
                    
| 提出日時 | 2025-06-12 13:14:47 | 
| 言語 | PyPy3  (7.3.15)  | 
                    
| 結果 | 
                             
                                AC
                                 
                             
                            
                         | 
                    
| 実行時間 | 73 ms / 2,000 ms | 
| コード長 | 1,650 bytes | 
| コンパイル時間 | 305 ms | 
| コンパイル使用メモリ | 82,660 KB | 
| 実行使用メモリ | 80,088 KB | 
| 最終ジャッジ日時 | 2025-06-12 13:16:58 | 
| 合計ジャッジ時間 | 3,418 ms | 
| 
                            ジャッジサーバーID (参考情報)  | 
                        judge5 / judge4 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| sample | AC * 4 | 
| other | AC * 30 | 
ソースコード
MOD = 998244353
def main():
    import sys
    input = sys.stdin.read
    data = input().split()
    N = int(data[0])
    S = data[1]
    
    # Precompute pow10 and inv10
    max_q = N
    pow10 = [1] * (max_q + 1)
    for i in range(1, max_q + 1):
        pow10[i] = pow10[i-1] * 10 % MOD
    inv10 = [1] * (max_q + 1)
    inv10[1] = pow(10, MOD-2, MOD)
    for i in range(2, max_q + 1):
        inv10[i] = inv10[i-1] * inv10[1] % MOD
    
    # Compute sum_mod3 and cnt_q
    sum_mod3 = [0] * (N + 1)
    cnt_q = [0] * (N + 1)
    for i in range(1, N+1):
        c = S[i-1]
        sum_mod3[i] = sum_mod3[i-1]
        cnt_q[i] = cnt_q[i-1]
        if c == '?':
            cnt_q[i] += 1
        else:
            sum_mod3[i] = (sum_mod3[i] + int(c)) % 3
    
    # Compute C0
    freq = [0] * 3
    freq[0] = 1
    C0 = 0
    for i in range(1, N+1):
        current = sum_mod3[i]
        C0 += freq[current]
        freq[current] += 1
    
    # Compute suffix_sum for pow10[cnt_q[R]]
    suffix_sum = [0] * (N + 2)
    for i in range(N, 0, -1):
        suffix_sum[i] = (suffix_sum[i+1] + pow10[cnt_q[i]]) % MOD
    
    # Compute sum_10k
    sum_10k = 0
    for L in range(1, N+1):
        k_L_prev = cnt_q[L-1]
        inv = inv10[k_L_prev]
        s = suffix_sum[L] * inv % MOD
        sum_10k = (sum_10k + s) % MOD
    
    # Compute T = N*(N+1)//2
    T = N * (N + 1) // 2
    
    # Compute sum_terms = (3*C0 - T) % MOD
    sum_terms = (3 * C0 - T) % MOD
    
    # Total answer
    inv3 = pow(3, MOD-2, MOD)
    total = (sum_10k + sum_terms) % MOD
    total = total * inv3 % MOD
    
    print(total)
if __name__ == '__main__':
    main()
            
            
            
        
            
gew1fw