結果
| 問題 |
No.2243 Coaching Schedule
|
| コンテスト | |
| ユーザー |
gew1fw
|
| 提出日時 | 2025-06-12 13:19:50 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 2,160 bytes |
| コンパイル時間 | 188 ms |
| コンパイル使用メモリ | 82,320 KB |
| 実行使用メモリ | 116,184 KB |
| 最終ジャッジ日時 | 2025-06-12 13:22:15 |
| 合計ジャッジ時間 | 6,373 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 5 TLE * 1 -- * 31 |
ソースコード
MOD = 998244353
def main():
import sys
from collections import defaultdict
M, N = map(int, sys.stdin.readline().split())
A = list(map(int, sys.stdin.readline().split()))
freq = defaultdict(int)
for a in A:
freq[a] += 1
c = list(freq.values())
if not c:
print(0)
return
max_c = max(c)
max_n = max(N, max_c)
# Precompute factorial and inverse factorial
fact = [1] * (max_n + 1)
for i in range(1, max_n + 1):
fact[i] = fact[i-1] * i % MOD
inv_fact = [1] * (max_n + 1)
inv_fact[max_n] = pow(fact[max_n], MOD-2, MOD)
for i in range(max_n - 1, -1, -1):
inv_fact[i] = inv_fact[i+1] * (i+1) % MOD
ans = 0
# Precompute all possible K - c_s for each c in c
# To optimize, precompute the required terms for each K
for K in range(max_c, N + 1):
# Compute product of P(K, c_s) for all s
product_p = 1
for x in c:
if K < x:
product_p = 0
break
product_p = product_p * fact[K] % MOD
product_p = product_p * inv_fact[K - x] % MOD
if product_p == 0:
continue
# Compute inclusion-exclusion sum for this K
sum_ie = 0
for d in range(0, K + 1):
t = K - d
valid = True
for x in c:
if t < x:
valid = False
break
if not valid:
continue
# Compute combination C(K, d)
comb = fact[K] * inv_fact[d] % MOD
comb = comb * inv_fact[K - d] % MOD
# Compute product of P(t, c_s)
product_t = 1
for x in c:
product_t = product_t * fact[t] % MOD
product_t = product_t * inv_fact[t - x] % MOD
term = comb * product_t % MOD
if d % 2 == 1:
term = (-term) % MOD
sum_ie = (sum_ie + term) % MOD
ans = (ans + sum_ie) % MOD
print(ans)
if __name__ == "__main__":
main()
gew1fw