結果
| 問題 |
No.2313 Product of Subsequence (hard)
|
| ユーザー |
gew1fw
|
| 提出日時 | 2025-06-12 13:20:46 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 3,396 bytes |
| コンパイル時間 | 437 ms |
| コンパイル使用メモリ | 82,768 KB |
| 実行使用メモリ | 278,128 KB |
| 最終ジャッジ日時 | 2025-06-12 13:22:53 |
| 合計ジャッジ時間 | 9,978 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 10 TLE * 1 -- * 16 |
ソースコード
MOD = 998244353
def main():
import sys
input = sys.stdin.read().split()
ptr = 0
N, K = int(input[ptr]), int(input[ptr+1])
ptr += 2
A = list(map(int, input[ptr:ptr+N]))
ptr += N
if K == 1:
print((pow(2, N, MOD) - 1) % MOD)
return
# Factorize K
factors = factorize(K)
primes = list(factors.keys())
exponents = [factors[p] for p in primes]
m = len(primes)
# Split into relevant and irrelevant elements
relevant = []
irrelevant = []
for a in A:
exps = []
for p in primes:
cnt = 0
x = a
while x % p == 0 and x != 0:
cnt += 1
x = x // p
exps.append(cnt)
if all(e == 0 for e in exps):
irrelevant.append(a)
else:
relevant.append(exps)
R = len(relevant)
M = len(irrelevant)
total_invalid = 0
# Iterate over all non-empty subsets of primes
for mask in range(1, 1 << m):
S = [i for i in range(m) if (mask >> i) & 1]
S_e = [exponents[i] for i in S]
active = []
for exps in relevant:
valid = True
has_positive = False
for i in S:
e = exps[i]
if e >= exponents[i]:
valid = False
break
if e > 0:
has_positive = True
if valid and has_positive:
s_exps = [exps[i] for i in S]
active.append(s_exps)
Q = 0
for exps in relevant:
valid = True
has_positive = False
for i in S:
e = exps[i]
if e >= exponents[i]:
valid = False
break
if e > 0:
has_positive = True
if valid and has_positive:
continue
all_zero = True
for i in S:
if exps[i] != 0:
all_zero = False
break
if all_zero:
Q += 1
# Compute X using DP
dp = {}
initial_state = tuple([0] * len(S))
dp[initial_state] = 1
for exps in active:
new_dp = dp.copy()
for state, cnt in dp.items():
new_state = list(state)
valid = True
for i in range(len(S)):
new_state[i] += exps[i]
if new_state[i] >= S_e[i]:
valid = False
break
if valid:
new_state_tuple = tuple(new_state)
new_dp[new_state_tuple] = (new_dp.get(new_state_tuple, 0) + cnt) % MOD
dp = new_dp
X = sum(dp.values()) % MOD
f_S = (X * pow(2, Q, MOD)) % MOD
k = len(S)
sign = (-1) ** (k + 1)
total_invalid = (total_invalid + sign * f_S) % MOD
valid_relevant = (pow(2, R, MOD) - total_invalid) % MOD
ans = (valid_relevant * pow(2, M, MOD)) % MOD
print(ans)
def factorize(n):
factors = {}
i = 2
while i * i <= n:
while n % i == 0:
factors[i] = factors.get(i, 0) + 1
n = n // i
i += 1
if n > 1:
factors[n] = 1
return factors
if __name__ == '__main__':
main()
gew1fw