結果
問題 |
No.2075 GCD Subsequence
|
ユーザー |
![]() |
提出日時 | 2025-06-12 13:25:08 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 1,875 ms / 4,000 ms |
コード長 | 1,838 bytes |
コンパイル時間 | 208 ms |
コンパイル使用メモリ | 82,304 KB |
実行使用メモリ | 135,020 KB |
最終ジャッジ日時 | 2025-06-12 13:31:18 |
合計ジャッジ時間 | 28,381 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 28 |
ソースコード
import sys from sys import stdin from collections import defaultdict MOD = 998244353 def main(): # Precompute smallest prime factors (SPF) up to 1e6 max_a = 10**6 spf = list(range(max_a + 1)) for i in range(2, int(max_a**0.5) + 1): if spf[i] == i: for j in range(i*i, max_a + 1, i): if spf[j] == j: spf[j] = i # Function to get distinct primes of x def get_primes(x): if x == 1: return set() primes = set() while x != 1: p = spf[x] primes.add(p) while x % p == 0: x //= p return primes # Read input input = sys.stdin.read().split() n = int(input[0]) a = list(map(int, input[1:n+1])) answer = 0 cnt = defaultdict(int) for x in a: if x == 1: answer = (answer + 1) % MOD continue primes = get_primes(x) if not primes: answer = (answer + 1) % MOD continue primes = sorted(primes) n_primes = len(primes) subsets = [] for mask in range(1, 1 << n_primes): product = 1 bits = 0 for i in range(n_primes): if mask & (1 << i): product *= primes[i] bits += 1 subsets.append((product, bits)) # Compute s s = 0 for product, bits in subsets: sign = (-1) ** (bits + 1) term = (sign * cnt.get(product, 0)) % MOD s = (s + term) % MOD dp_i = (s + 1) % MOD answer = (answer + dp_i) % MOD # Update cnt for product, bits in subsets: cnt[product] = (cnt[product] + dp_i) % MOD print(answer % MOD) if __name__ == "__main__": main()