結果
| 問題 | 
                            No.223 1マス指定の魔方陣
                             | 
                    
| コンテスト | |
| ユーザー | 
                             gew1fw
                         | 
                    
| 提出日時 | 2025-06-12 13:48:17 | 
| 言語 | PyPy3  (7.3.15)  | 
                    
| 結果 | 
                             
                                RE
                                 
                             
                            
                         | 
                    
| 実行時間 | - | 
| コード長 | 1,746 bytes | 
| コンパイル時間 | 377 ms | 
| コンパイル使用メモリ | 82,508 KB | 
| 実行使用メモリ | 68,568 KB | 
| 最終ジャッジ日時 | 2025-06-12 13:48:51 | 
| 合計ジャッジ時間 | 4,465 ms | 
| 
                            ジャッジサーバーID (参考情報)  | 
                        judge5 / judge1 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| sample | AC * 1 | 
| other | AC * 21 RE * 25 | 
ソースコード
N, X, Y, Z = map(int, input().split())
X -= 1  # Convert to 0-based index
Y -= 1
def make_doubly_even_magic_square(n):
    mat = [[i * n + j + 1 for j in range(n)] for i in range(n)]
    for i in range(n):
        for j in range(n):
            sub_i = i % 4
            sub_j = j % 4
            if (sub_i in (0, 3) and sub_j in (0, 3)) or (sub_i in (1, 2) and sub_j in (1, 2)):
                mat[i][j] = (n * n + 1) - mat[i][j]
    return mat
def rotate(matrix):
    n = len(matrix)
    return [[matrix[n - j - 1][i] for j in range(n)] for i in range(n)]
def reflect_horizontal(matrix):
    return [row[::-1] for row in matrix]
def reflect_vertical(matrix):
    return [row for row in reversed(matrix)]
def generate_transformations(matrix):
    transforms = []
    current = matrix
    for _ in range(4):
        transforms.append(current)
        transforms.append(reflect_horizontal(current))
        transforms.append(reflect_vertical(current))
        current = rotate(current)
    return transforms
# Generate the magic square using the doubly even method
magic_square = make_doubly_even_magic_square(N)
# Check all transformations of the generated magic square
found = None
for variant in generate_transformations(magic_square):
    if variant[Y][X] == Z:
        found = variant
        break
# If not found, check a known magic square for N=4 (as a fallback)
if not found and N == 4:
    known_square = [
        [3, 13, 16, 2],
        [10, 8, 5, 11],
        [6, 12, 9, 7],
        [15, 1, 4, 14]
    ]
    for variant in generate_transformations(known_square):
        if variant[Y][X] == Z:
            found = variant
            break
# Output the found magic square
for row in found:
    print(' '.join(map(str, row)))
            
            
            
        
            
gew1fw