結果
| 問題 |
No.1025 Modular Equation
|
| コンテスト | |
| ユーザー |
gew1fw
|
| 提出日時 | 2025-06-12 13:59:50 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
MLE
|
| 実行時間 | - |
| コード長 | 1,480 bytes |
| コンパイル時間 | 387 ms |
| コンパイル使用メモリ | 82,300 KB |
| 実行使用メモリ | 848,620 KB |
| 最終ジャッジ日時 | 2025-06-12 14:00:22 |
| 合計ジャッジ時間 | 6,140 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 6 MLE * 1 -- * 25 |
ソースコード
MOD = 10**9 + 7
def main():
import sys
input = sys.stdin.read().split()
ptr = 0
p = int(input[ptr]); ptr +=1
n = int(input[ptr]); ptr +=1
k = int(input[ptr]); ptr +=1
b = int(input[ptr]); ptr +=1
a_list = list(map(int, input[ptr:ptr+n]))
ptr +=n
# Precompute x^k mod p for all x in 0..p-1
pow_x = [pow(x, k, p) for x in range(p)]
terms = []
for a in a_list:
if a == 0:
terms.append({0: 1}) # but wait, x can be any, so a_i x^k is 0 for all x. So count is p.
# So freq is {0: p}
terms[-1] = {0: p % MOD}
continue
# Compute the frequency for a * pow_x[x] mod p
freq = {}
for x in range(p):
c = (a * pow_x[x]) % p
if c in freq:
freq[c] = (freq[c] + 1) % MOD
else:
freq[c] = 1 % MOD
terms.append(freq)
# Initialize DP
dp = [0] * p
dp[0] = 1 # initial sum is 0
for term in terms:
next_dp = [0] * p
# Iterate over all current residues s where dp[s] is non-zero
for s in range(p):
if dp[s] == 0:
continue
# Iterate over all residues c in the term's frequency
for c, cnt in term.items():
new_s = (s + c) % p
next_dp[new_s] = (next_dp[new_s] + dp[s] * cnt) % MOD
dp = next_dp
print(dp[b] % MOD)
if __name__ == "__main__":
main()
gew1fw