結果
| 問題 |
No.577 Prime Powerful Numbers
|
| コンテスト | |
| ユーザー |
gew1fw
|
| 提出日時 | 2025-06-12 14:00:52 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 3,849 bytes |
| コンパイル時間 | 288 ms |
| コンパイル使用メモリ | 82,904 KB |
| 実行使用メモリ | 140,276 KB |
| 最終ジャッジ日時 | 2025-06-12 14:01:58 |
| 合計ジャッジ時間 | 6,740 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | -- * 1 |
| other | TLE * 1 -- * 9 |
ソースコード
import math
import sys
def is_prime(n):
if n <= 1:
return False
elif n <= 3:
return True
elif n % 2 == 0:
return False
d = n - 1
s = 0
while d % 2 == 0:
d //= 2
s += 1
bases = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]
for a in bases:
if a >= n:
continue
x = pow(a, d, n)
if x == 1 or x == n - 1:
continue
for _ in range(s - 1):
x = pow(x, 2, n)
if x == n - 1:
break
else:
return False
return True
def is_prime_power(n):
if is_prime(n):
return True
max_b = int(math.log2(n)) + 1
for b in range(2, max_b + 1):
low = 1
high = n
found = False
while low <= high:
mid = (low + high) // 2
power = mid ** b
if power == n:
found = True
break
elif power < n:
low = mid + 1
else:
high = mid - 1
if found and is_prime(mid):
return True
return False
def generate_high_powers(N):
candidates = []
p = 2
max_p = int(math.isqrt(N)) + 1
while p <= max_p:
if is_prime(p):
a = 2
current = p * p
while current <= N:
candidates.append(current)
a += 1
next_val = p ** a
if next_val > N or next_val < current:
break
current = next_val
p += 1
if p > 10**6:
break
return candidates
def sieve(limit):
sieve = [True] * (limit + 1)
sieve[0] = sieve[1] = False
for i in range(2, int(math.sqrt(limit)) + 1):
if sieve[i]:
for j in range(i*i, limit+1, i):
sieve[j] = False
primes = [i for i, val in enumerate(sieve) if val]
return primes
def generate_low_primes(N):
limit = 10**6
primes = sieve(limit)
return [p for p in primes if p <= N]
def generate_near_primes(N):
candidates = []
max_qb = 10**6
qb_list = set()
primes = sieve(int(math.isqrt(max_qb)) + 1)
for q in primes:
if q < 2:
continue
a = 2
while True:
q_power = q ** a
if q_power > max_qb:
break
qb_list.add(q_power)
a += 1
for q in primes:
if q <= max_qb:
qb_list.add(q)
for qb in qb_list:
x = N - qb
if x >= 2 and is_prime(x):
candidates.append(x)
for delta in [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]:
x = N - delta
if x >= 2 and is_prime(x):
candidates.append(x)
return candidates
def solve():
Q = int(sys.stdin.readline())
for _ in range(Q):
N = int(sys.stdin.readline())
if N < 2:
print("No")
continue
high_powers = generate_high_powers(N)
low_primes = generate_low_primes(N)
near_primes = generate_near_primes(N)
candidates = set(high_powers + low_primes + near_primes)
found = False
for x in candidates:
if x > N:
continue
y = N - x
if y < 1:
continue
if is_prime_power(y):
found = True
break
if not found:
for x in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]:
if x > N:
continue
y = N - x
if y < 1:
continue
if is_prime_power(y):
found = True
break
if found:
print("Yes")
else:
print("No")
if __name__ == "__main__":
solve()
gew1fw