結果
問題 |
No.577 Prime Powerful Numbers
|
ユーザー |
![]() |
提出日時 | 2025-06-12 14:00:56 |
言語 | PyPy3 (7.3.15) |
結果 |
TLE
|
実行時間 | - |
コード長 | 3,565 bytes |
コンパイル時間 | 250 ms |
コンパイル使用メモリ | 82,304 KB |
実行使用メモリ | 127,616 KB |
最終ジャッジ日時 | 2025-06-12 14:02:08 |
合計ジャッジ時間 | 6,663 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | -- * 1 |
other | TLE * 1 -- * 9 |
ソースコード
import sys import math def sieve(limit): sieve = [True] * (limit + 1) sieve[0] = sieve[1] = False for i in range(2, int(math.sqrt(limit)) + 1): if sieve[i]: sieve[i*i : limit+1 : i] = [False] * len(sieve[i*i : limit+1 : i]) primes = [i for i, is_prime in enumerate(sieve) if is_prime] return primes primes = sieve(10**6) def is_prime(n): if n < 2: return False for p in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]: if n % p == 0: return n == p d = n - 1 s = 0 while d % 2 == 0: d //= 2 s += 1 for a in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]: if a >= n: continue x = pow(a, d, n) if x == 1 or x == n - 1: continue for _ in range(s - 1): x = pow(x, 2, n) if x == n - 1: break else: return False return True def integer_nth_root(x, n): if x == 0: return 0 low = 1 high = x while low <= high: mid = (low + high) // 2 try: temp = mid ** n except OverflowError: temp = float('inf') if temp == x: return mid elif temp < x: low = mid + 1 else: high = mid - 1 return high def is_prime_power(x): if x < 2: return False max_e = x.bit_length() for e in range(max_e, 0, -1): k = integer_nth_root(x, e) if k ** e == x: if is_prime(k): return True return False def solve(): input = sys.stdin.read().split() Q = int(input[0]) for i in range(1, Q + 1): N = int(input[i]) found = False # Case 1: p is a prime, rem = N - p is a prime power for p in primes: if p >= N: break rem = N - p if rem < 2: continue if is_prime_power(rem): found = True break if not found: # Check if N-2 is a prime power (since 2 is a prime) if (N - 2) >= 2: if is_prime_power(N - 2): found = True if found: print("Yes") continue # Case 2: both terms are prime powers with exponents >= 2 for a in range(2, 61): p_max = integer_nth_root(N, a) if p_max < 2: continue # Check p_max and nearby values for delta in range(100): p = p_max - delta if p < 2: break if not is_prime(p): continue pa = p ** a if pa > N: continue rem = N - pa if rem < 2: continue if is_prime_power(rem): found = True break if found: break # Check primes from sieve up to p_max for p in primes: if p > p_max: break pa = p ** a if pa > N: break rem = N - pa if rem < 2: continue if is_prime_power(rem): found = True break if found: break print("Yes" if found else "No") if __name__ == "__main__": solve()